
Natural Language Generation from Class Diagrams

Håkan Burden
Computer Science and Engineering

Chalmers University of Technology and
University of Gothenburg

Gothenburg, Sweden
burden@chalmers.se

Rogardt Heldal
Computer Science and Engineering

Chalmers University of Technology and
University of Gothenburg

Gothenburg, Sweden
heldal@chalmers.se

ABSTRACT
A Platform-Independent Model (PIM) is supposed to cap-
ture the requirements specified in the Computational Inde-
pendent Model (CIM). It can be hard to validate that this
is the case since the stakeholders might lack the necessary
training to access the information of the software models in
the PIM. In contrast, a description of the PIM in natural
language will enable all stakeholders to be included in the
validation.

We have conducted a case study to investigate the pos-
sibilities to generate natural language text from Executable
and Translatable UML. In our case study we have considered
a static part of the PIM; the structure of the class diagram.
The transformation was done in two steps. In the first step,
the class diagram was transformed into an intermediate lin-
guistic model using Grammatical Framework. In the second
step, the linguistic model is transformed into natural lan-
guage text. The PIM was enhanced in such a way that the
generated texts can both paraphrase the original software
models as well as include the underlying motivations behind
the design decisions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Validation; D.2.7 [Software Engineering]: Dis-
tribution, Maintenance and Enhancement—Documentation,
Restructuring, reverse engineering and reengineering ; 1.2.7
[Artificial Intelligence]: Natural Language Processing—
Language generation; I.6.4 [Simulation and Modeling]:
Model validation and analysis; I.6.5 [Simulation and Mod-
eling]: Model Development

General Terms
Reliability, Verification

Keywords
Model-Driven Architecture, Model Transformations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
In Model-Driven Architecture (MDA; [15, 25]) software

models are transformed into code in a series of transfor-
mations. The models have different purposes and level of
abstraction towards the resulting implementation.

A Computational Independent Model (CIM) shows the
environment of the software and its requirements in a way
that can be understood by domain experts. The CIM is of-
ten referred to as the domain model and is specified using
the vocabulary of the domain’s practitioners and the stake-
holders [17].

In the transformation from a CIM to a Platform Indepen-
dent Model (PIM) the purpose of the models change and
the focus is on the computational complexity that is needed
to describe the behaviour and structure of the software.

The PIM is then transformed into a Platform Specific
Model (PSM) which is a concrete solution to the problem
as specified by the CIM. The PSM will include informa-
tion about which programming language(s) to use and what
hardware to deploy the executable code on.

One way of realising the model transformations in the
MDA process is shown in Figure 1 which is adopted from
[17]. In this process the transformation from CIM to PIM is
done manually while the transformation from PIM to PSM is
formalised by using marks and mappings. The marks reflect
both unique properties of a certain PSM as well as domain-
specific properties of the PIM, while the mappings describe
a model to model transformation [15].

In MDA the PIM should be a bridge between the CIM
and the PSM. Thus it is important that the PIM is clear
and articulate [11, 33] to convey the intentions and moti-
vations in the CIM as well as correctly describe the PSM
[26]. Claims have been made that comprehensibility is more
important than completeness if models are used for commu-
nication between stakeholders [18]. But if the stakeholders
want to know if the PIM is complete with regards to the
CIM, completeness is just as important.

1.1 Motivation
The developers of the PIM have to interpret the CIM to

make their design decisions. Thus there are many ways for
the PIM to represent a different solution to the problem
compared to the solution given by the CIM: The CIM might
be ambiguous or use vaguely defined concepts with the risk
that it is misinterpreted; the CIM might be incomplete in
the view of the developers of the PIM so they make addi-
tions to the PIM and finally, the CIM might be assessed as
incorrect but the correction is made in the PIM and not in

Figure 1: One realisation of the MDA process

the CIM. Over time the CIM and the PIM diverge due to
the interaction of these inconsistencies.

The problem is not limited to the development phase. In
order to adopt the CIM and the PIM to changing require-
ments, new developers have to be able to understand why
the models are designed in the way they are and how they
can be changed according to their underlying theory [20].

An example of the threat of failing to understand the un-
derlying theory is given in [2]. From their experiences at
British Airways they report on how important business rules
are trivialised in the PIM as it is incapable of showing which
business requirements are most important when all elements
look the same in a class diagram. To demonstrate their point
they use the notion of codesharing. Codesharing is when air-
lines in an alliance can sell seats on each others flights. For
this to be possible a flight has to be able to have more than
one flight code. In a class diagram this business requirement
worth millions of pounds is obscured as a simple multiplicity
on an association between two classes, see Figure 2.

So the transformation from CIM to PIM poses two ques-
tions: How do we know that the PIM captures the require-
ments of the CIM, and nothing else? And how can we make
sure that future developers of the PIM understand the in-
tentions and motivations behind the design decisions [20]?
The evaluation of the correctness of the PIM’s behaviour
and structure can be done by testing and model reviewing.

Both testing and accessing the information of the PIM
requires an understanding of object-oriented design, knowl-
edge of the used models and experience of using tools for
software modelling [2]. Textual descriptions, on the other
hand, are suitable for stakeholders without the necessary
expertise in software models [9]; natural language can be un-
derstood by anyone, allowing all stakeholders to contribute
to the validation of the PIM.

1.2 Aim
Our long-term aim is to reverse engineer the marked PIM

into a CIM, investigating how much of the original CIM that
can be generated from the marked PIM. As our first step
towards a complete system we have chosen the structure of
the class diagrams. The aim of the generated text is not
only to paraphrase the class diagram but also to include the
underlying motivations and design decisions that form the
theory behind the model.

By using an MDA approach for generating natural lan-
guage text we enable the textual description of the PIM,
the PIM itself and deployed PSMs to be synchronised with
each other. The texts can be used by stakeholders that are
unfamiliar with software models to validate the structure

and behaviour of the models, enabling a process that leads
to software meeting the requirements and expectations of all
stakeholders.

1.3 Contribution
We have generated textual descriptions of the structure

of the class diagram that not only paraphrase the diagrams
but also include the underlying motivations and design deci-
sions. The mappings from marked PIM to natural language
PSMs are generic and can be applied to any marked PIM. In-
deed, since the marks are used to enhance the performance
of the mappings the transforming an unmarked PIM will
still generate a linguistic model. Though the text generated
from such a linguistic model might have minor grammatical
errors.

The vocabulary of the PIM is reused as lexicon for the
generated linguistic model so that we can generate text for
any domain independent of how technical or unpredictable
the vocabulary may be.

In MDA terms the generation of natural language was
solved by first transforming the xtUML models into an in-
termediate linguistic model, a grammar. In a second trans-
formation the grammar was used to generate the desired
view of the class diagrams as natural language text.

1.4 Overview
In the next section we present the background knowledge

for our case study in terms of natural language generation,
the Grammatical Framework and Executable and Translat-
able UML. In section 3 we describe our case study of trans-
forming the PIM into a CIM. The results are given in section
4, followed by a discussion in section 5. Our case study is
related to previous work in section 6 and a summary with
drafts for future work concludes our contribution.

2. BACKGROUND
In our case study we have used the MDA perspective on

models for Natural Language Generation [29]. This was
achieved by first transforming the marked PIM into a lin-
guistic model defined by the Grammatical Framework [28].
The linguistic model was then used to generate the final tex-
tual description of the PIM. We used Executable and Trans-
latable UML to model the class diagram and the model to
model transformation.

2.1 Executable and Translatable UML
The Executable and Translatable Unified Modeling Lan-

guage (xtUML; [14, 27, 34]) evolved from merging the Shlaer-
Mellor method [30] with the Unified Modeling Language
(UML, [23]).

There are three kinds of diagrams used in xtUML (compo-
nent diagrams, class diagrams and statemachines) as well as
a textual Action language. The Action language is used to
define the semantics of the graphical diagrams. This study
only concerns the class diagrams.

2.1.1 xtUML Class Diagrams
In Figure 2 we have an example of an xtUML class di-

agram. The xtUML classes and associations are more re-
stricted than in UML. We will only mention those differences
that are interesting for our case study.

In UML the associations between classes can be given a
descriptive association name while in xtUML the association

Figure 2: An xtUML class diagram

names are automatically given names on the form RN where
N is a unique natural number. I.e. Flight is associated to
FlightNumber over the association R5.

In xtUML there are no special associations for the UML
aggregate and composition associations. Both aggregation
and composition express a parts-of relation with the dif-
ference that in aggregation, the parts can exist without a
’whole’ while in composition the parts cannot exist without
the ’whole’. Following the definition given by the OMG [23]
aggregation is modelled by using the multiplicity 0..1 and
composition by using the multiplicity 1.

Speaking of multiplicities, in xtUML there are only four
possible combinations of multiplicities; 0..1, 1, * and 1..*.

2.1.2 Model Transformation
The PIM to PSM transformation is handled by model

compilers. A model compiler takes a marked PIM and a
set of mappings that specify how the different elements of
the marked PIM are to be translated into the PSM [15,
17]. Since the PSM is generated from the marked PIM, it
is possible for the running code and the software models
to always be in synchronization with each other since all
updates and changes to the system are done at the PIM-
level, never by touching the PSM. The model compiler allows
the same PIM to be transformed into different PSMs [1]
without a loss in efficiency compared to handwritten code
[31].

2.2 Natural Language Generation
When compiling a marked PIM into a PSM it is important

to include all the information of the marked PIM into the
transformation. For Natural Language Generation (NLG)
this is not the case [29]. The content, its layout and the
internal order of the generated text is dependent on who
the reader is, the purpose of the text and by which means it
is displayed. In this sense the texts can be seen as platform-
specific.

Traditionally NLG is broken down into a three-stage pi-
peline; text planning, sentence planning and linguistic real-
isation [29]. From an MDA perspective NLG can be viewed
as two transformations. The first transformation takes the

software model and reshapes it to an intermediate linguistic
model by performing text and sentence planning. The sec-
ond transformation is equivalent to the linguistic realisation
as the linguistic model is transformed into natural language
text. We will use our class diagram in Figure 2 to exemplify
the purpose of the three stages.

2.2.1 Text Planning
Text planning is to decide on what information in the orig-

inal model to communicate to the readers. When the selec-
tion has been done the underlying structure of the content
is determined. In our case we first describe the classes with
attributes and operations, then the associations between the
classes with multiplicities.

2.2.2 Sentence Planning
When the overall structure of the text is determined the

attention is turned towards the individual sentences. This
is also the time for choosing the words that are going to
be used for the different concepts, e.g. an aircraft can both
depart or leave an airport. The original software model has
now been transformed into a linguistic model.

2.2.3 Linguistic Realisation
In the last stage the linguistic model is used to generate

text with the right syntax and word forms. The linguis-
tic model should ensure that the nouns get the right plural
forms and that we get a flight but an aircraft. Through
the linguistic realisation the intermediate model has been
transformed into a natural language text.

2.3 Grammatical Framework
For defining the linguistic model we use Grammatical Fra-

mework (GF, [28]). In GF the grammars are separated into
an abstract and a concrete syntax. To understand how we
have used GF and the resource grammars we give an ex-
ample that generates the sentence An Aircraft has many
Flights. The grammar is found in Figure 3. It is not neces-
sary to understand the details of the grammar, it is included
as a small example of the kind of output that is generated
from our model to model transformation.

2.3.1 Abstract Syntax
The abstract syntax is defined by two finite sets, cate-

gories (cat) and functions (fun). The categories are used as
building blocks and define the arguments and return values
of the functions

From the class diagram in Figure 2 we have that both
Aircraft and Flight are class names. We want to use this
information in our grammar, defining a function for both
Aircraft and Flight, see Figure 3. From a linguistic point
of view they define the lexical items that make up our lex-
icon. Lexical items can be used to define more complex
functions, like OneToMany that returns a Text describing the
association between two ClassNames. By defining our cat-
egories (the content of the text) and the functions (the or-
dering of the content) we have completed the text planning
stage of the NLG process.

2.3.2 Abstract Trees
Abstract syntax trees are formed by using the functions as

syntactic constructors according to their arguments. While
the abstract syntax shows the text planning for a possibly

Abstract syntax:

cat Text, ClassName ;

fun Aircraft : ClassName ;

Flight : ClassName ;

OneToMany : ClassName × ClassName → Text ;

Concrete syntax:

lincat Text = RGL.Text ;

ClassName = CN ;

lin Aircraft = mkCN (mkN "Aircraft" "Aircraft") ;

Flight = mkCN (mkN "Flight") ;

OneToMany aircraft flight =

mkText (mkCl (mkNP (mkDet a_Quant) aircraft)

(mkV2 have_V)

(mkNP (mkDet many_Quant) flight)) ;

Figure 3: An example of an automatically generated
GF grammar

infinite set of texts the abstract tree represents the struc-
ture of exactly one text. According to our example gram-
mar the sentence An Aircraft has many Flights will have
OneToMany(Aircraft, Flight) as its abstract tree.

2.3.3 Concrete Syntax
A concrete syntax assigns a linearisation category (lincat)

to every abstract category and a linearisation rule (lin) to
every abstract function. The linearisation categories define
how the concepts of the PIM are mapped to the pre-defined
categories of GF. From an NLG perspective the linearisation
rules supply the sentence planning. The concrete syntax is
implemented by using the GF Resource Grammar Library.

2.3.4 Resource Grammar Library
In the Resource Grammar Library (RGL) a common ab-

stract syntax has sixteen different implementations in form
of concrete syntaxes. Among the covered languages are En-
glish, Finnish, Russian and Urdu. The resource grammars
come with an interface which hides the complexity of each
concrete language behind a common abstract interface.

The RGL interface supplies a grammar writer with a num-
ber of functions for defining a concrete syntax. In Figure 3
mkText, mkCl and a_Quant are examples of such functions.
Exactly how these functions are implemented is defined by
the concrete resource grammar for each language. Just as
for a programming language we only need to understand the
interface of the library to get the desired results, we do not
need to understand the inner workings of the library itself.

2.3.5 Linearisation
In GF the linearisation of an abstract tree, t, by a concrete

syntax, C, can be written as tC and formulated as follows

(f(t1, . . . , tn))
C = f

C(tC1, . . . , t
C
n)

where fC is a concrete linearisation of a function f [13].
The linearisation of OneToMany(Aircraft, Flight) using

the concrete English grammar ENG described in Figure 3 is
then unwrapped as follows

Figure 4: From marked PIM to text

(OneToMany(Aircraft, Flight))ENG

= OneToMany
ENG(AircraftENG, FlightENG)

= mkText(mkCl(mkNP(mkDet a Quant) AircraftENG)

(mkV2 have V)

(mkNP(mkDet many Quant) FlightENG))

= mkText(mkCl(mkNP(mkDet a Quant)

(mkCN(mkN ”Aircraft” ”Aircraft”))))

(mkV2 have V)

(mkNP(mkDet many Quant)(mkCN(mkN ”Flight”))))

= An Aircraft has many Flights

Linearisation is an built-in functionality of GF and equiv-
alent to the linguistic realisation of NLG.

3. NATURAL LANGUAGE GENERATION
FROM CLASS DIAGRAMS

To investigate the possibilities for natural language gener-
ation from software models we have conducted a case study
using xtUML to model the PIM and perform the model-to-
model transformations. The reason for choosing xtUML is
that the model compiler enables a convenient way of trans-
forming the PIM to different PSMs. We used BridgePoint
[3, 14] as our xtUML tool.

3.1 Case Description
The original case was a hotel reservation system. To avoid

getting into domain details and explaining the different com-
ponents and subsystems we reuse the example given in [2]
with a small extension; we have added classes for the con-
cepts Aircraft, Airport and Airline. The result is a class
diagram that highlights the problems we want to solve and
what we can achieve in forms of NLG. The class diagram
can be found in Figure 2. The intention of the diagram is
not a complete description of the problem domain.

Our PIM includes a note for the association R5, A Flight
can have more than one Flight number since code sharing
is a multimillion-pound business, affecting an alliance of
airlines. There are also notes on the associations so that
they carry meaningful association names instead of xtUML’s
generic ones. R1 and R2 are annotated with has, R3 is an-
notated with is booked for, R4 is annotated with belongs to
which is to be read from left-to-right only and R5 has the
note is identified by which also is to be read from left-to-
right.

An overview of our system is found in Figure 4. The
shaded modules are generated in the model-to-model trans-

formation. The Resource Grammar Library (RGL) supplies
the necessary details to realise the concrete syntax. The
dotted lines within the systems give the dependencies be-
tween the modules while the solid lines show the transfor-
mations between the systems. The transformation between
xtUML and Grammatical Framework is defined as mappings
in BridgePoint while the transformation from Grammatical
Framework to text is automatically handled by GF through
linearisation.

The input to the first transformation in Figure 4 is a
marked PIM and a set of mappings. The marks are de-
scribed next and then the mappings.

3.1.1 Marking the PIM
Since we are aiming for a linguistic model and not source

code we use marks for irregular word forms, where the marks
play a similiar role as stereotypes in UML. In our example we
use a mark on the class Aircraft so that the noun Aircraft
has the same form in both singular and plural. Just as for
UML the xtUML metamodel can be extended for different
profiles. Our extension results in a natural language profile
for xtUML. The general mapping is otherwise to use the
regular form for English nouns, i.e. a plural s. The mappings
are generic and can be used for any marked PIM.

3.1.2 Mappings
We use the following pseudo-algorithm to decide what the

linguistic model should contain and in what order. These
mappings are generic and can be used for any marked PIM.
The mappings only consider certain aspects of the class dia-
grams of the PIM and if it contains other diagrams or action
language this information is just omitted.

generate lexicon for class diagram;

for each class in class diagram

if class has attributes

generate sentence for class attributes ;

if class has operations

generate sentence for class operations ;

for each association in class diagram

if association has association name

generate sentences for association ;

if association has association class

generate sentence for association class ;

if association has motivation

generate sentence for motivation ;

The algorithm is implemented by using the xtUML model
compiler.

3.2 xtUML to GF

3.2.1 Lexicon generation
Before we generate the different sentences of our text we

need a vocabulary. The content of the vocabulary, or lexicon
in linguistic terms, is taken from the names of the elements
of the class diagram and the marking model. The lexicon
therefore defines which concepts that will be included in
the final text (flights, names, codes etc.) and for which
reason (as class names, attributes and so on). Here is the
automatically generated abstract syntax of the lexicon, in a
dense representation to save space.

cat ClassName, Association, Attribute,

Multiplicity, Operation, Motivation ;

fun Flight, FlightNumber, Aircraft, Airline,

Airport : ClassName ;

R1, R2, R3, R4, R5 : Association ;

Name, Code, RegNr, Address,

AirportCode : Attribute ;

One, ZeroOne, ZeroMore,

OneMore : Multiplicity ;

GetNextFlight, GetAirline : Operation ;

R5Motivation : Motivation ;

3.2.2 Classes
To list the attributes of a class we generate a unique ab-

stract function for each class with one Attribute argument
for each class’s attribute in the PIM. The function corre-
sponding to the class Airport has the following abstract
syntax

AirportAttributes : ClassName × Attribute ×
Attribute × Attribute → Text ;

At the same time we generate an abstract syntax tree for
the function given the class it paraphrases

AirportAttributes(Airport, Name,

AirportCode, Address)

The same procedure as for attributes is repeated for listing
the operations of the classes.

3.2.3 Associations
We generate one function for all associations

Association : Association × Multiplicity ×
ClassName × Multiplicity × ClassName →
Text ;

This function is a generalisation of the OneToMany found in
Figure 3. For the association between Flight and Flight

Number we get the following tree

Association(R5, One, Flight, OneMore, FlightName)

To generate a text for an association class we use one
function that takes three class names as arguments

AssociationClass : ClassName × ClassName ×
ClassName → Text ;

For each association with an association class we then gen-
erate an abstract syntax tree. For association R5 in our
example diagram we get the following tree

AssociationClass(Flight, FlightName, Airline)

Each motivation is introduced into the grammars by a
unique function and abstract tree

R5Text : Motivation → Text ;

R5Text(R5Motivation)

3.2.4 Combining texts
We now have a set of unconnected abstract trees. To

combine the trees into one text we introduce the function

Combine : Text × Text → Text ;

If we append the generated abstract trees above, we get the
following abstract tree

Combine(

AirportAttributes(Airport, Name,

AirportCode, Address),

Combine(

Association(R5, One, Flight,

OneMore, FlightNumber),

Combine(

AssociationClass(Flight, FlightName,

Airline)

R5Text(R5Motivation))))

We have now automatically transformed the class diagram
into an abstract and a concrete syntax as well as an ab-
stract syntax tree. Together these three represent a linguis-
tic model of the text that we want to generate.

3.3 GF to Text
The generated abstract syntax tree for the document is

linearised by the GF lineariser. The linearisation of the tree
completes the transformation of our xtUML class diagram
into natural language text.

4. RESULTS
To show the results from our NLG process we give a small

text that is generated from the examples used in the previous
section.

An Airport has a name, an airport code and an address.
An Aircraft can get next Flight and get Airline. A Flight is
identified by one or more Flight Numbers. The relationship
between a Flight and a Flight Number is specified by an Air-
line. A Flight can have more than one Flight number since
code sharing is a multimillion-pound business, affecting an
alliance of airlines.

The generated text can now be used by the stakeholders
to validate that the class diagram has the right structure
and that the underlying theory is represented. The genera-
tion of textual descriptions from the class diagram enables
close communication with stakeholders, giving them con-
stant feedback which is a crucial point according to [9].

The grammars were automatically transformed from the
class diagram, all we needed to do was to mark the PIM
and give the mappings between the marked PIM and the
grammar. To generate text from another class diagram we
need new marks for the irregular nouns. We can then reuse
the mappings defined in our example to generate natural
language text from any marked PIM.

Since the role of the marks is to enhance the quality of the
transformation defined by the mappings it is not necessary
to start with a marked PIM. The results of applying the
mappings to an unmarked PIM is that we get a grammar
treating all class names as regular nouns. This might lead
to some odd phrasings, such as many Aircrafts. The divi-
sion of labour between marks and mappings means that a
developer with a reasonable knowledge of English can mark
the PIM with the necessary irregularities while an expert on
the target langauge and the used grammar formalism can
define the mappings once and for all.

A further result is that we managed to combine two dif-
ferent systems that are successful within their respective
domains. Executable and Translatable UML (xtUML) has
previously been proven to allow the PIM and the PSM to

Figure 5: An xtUML class-diagram

be consistent with each other as well as enabling reuse [1,
31]. GF is currently used in collaboration with industry for
multilingual translation in the MOLTO-project [19] and has
previously been used for multi-modal dialogue systems [4,
35] and in collaboration with the car industry [12].

5. DISCUSSION
In our Motivation we stressed that even a well-formed

model is difficult to understand, thus the need for textual
paraphrasing of its content and motivations. On the other
hand, paraphrasing the model will not make up for a lack
of detail in the model, those details are needed to make the
text informative. It is therefore important that the models
use meaningful names for classes, attributes and associations
etc. so that it is possible to generate a precise vocabulary
and meaningful descriptions of why classes are associated
with each other.

In UML we can use verbs or verb phrases for the asso-
ciation names and nouns for the role names [16]. The role
names can thus be seen as outsourced attributes. The prob-
lem is how to incorporate the information given by the class
name and the role name together with the association name.
For the class diagram in Figure 2, we state that An Airport
has one or more arrivals. But what is an arrival? A clarifica-
tion can be done in many ways, one is by adding subordinate
clauses that define an arrival, where an arrival is a Flight.
In xtUML the issue is solved differently.

Associations are given default names in xtUML, names
that have no semantic meaning to a human reader. To
understand what the association represents one has to un-
derstand the Action language that defines the association.
The lack of a verb phrase for the association opens up a
new way of looking at role names; [33] advocate that the
role names should be used as underspecified verb phrases
that are missing their complement. By using this definition
of role names on our class diagram we get a new diagram
adopted to xtUML, see Figure 5. The benefit is that we do
not need to mark the associations to give them meaningful
names and we can use the roles of the classes at the same
time. From this diagram we could generate the sentence An
Airport has one or more arriving Flights.

6. RELATED WORK
In a systematic literature review from 2009 there is only

one work that reports on generating natural language text
from class diagrams. From our own searches we have not
found any MDA approach that cites the review. However
there are other contributions that have used the same tech-
niques as we have, but in other settings.

A systematic literature review on text generation from
software engineering models is reported in [21]. Of the 24
contributions only one concerned the generation of natural
language text from UML diagrams, [16]. The motivation
for conducting the literature review was that even if models
are precise, expressive and widely understood by the de-
velopment team natural language has its benefits. Natural
language enables the participation of all stakeholders in the
validation of the requirements and makes it clear how far the
implementation of the requirements have come. [21] state
that none of the contributions address the issue of keeping
the generated documents synchronized with the PIM.

Our examples of generated text are inspired by the work
done by [16]. They generate natural language descriptions
of UML class diagrams using WordNet [8] for obtaining the
necessary linguistic knowledge. WordNet is a wide-coverage
resource which makes it useful for general applications but
can limit the use for domain-specific tasks. We use a domain-
specific grammar that is tailored for just our needs. What-
ever the domain our approach has lexical coverage while
WordNet will lack lexcial knowledge about more technical
areas. When it comes to results there texts are descriptions
of the class diagram while ours also include the underlying
motivations for the structure.

In [7] the Semantics of Business Vocabulary and Business
Rules (SBVR, [24]) is used as an intermediate representation
for transforming UML and OCL into constrained natural
language. This means that SBVR maps to a limited set of
possible sentence structures while GF allows a free sentence
planning.

[5] have developed a system that transforms class dia-
grams into natural language texts. Their system differs from
ours in that it marks all model elements with the correspond-
ing linguistic realisation. While our system relies on the
linguistic model to perform the linguistic realisation, their
system maps the marks straight into pre-defined sentences
with slots for the linguistic realisation of the model elements.

Grammatical Framework has been used before to generate
requirements specifications [6, 10] in the Object Constraint
Language (OCL; [22, 36]). GF is used to translate expres-
sions in OCL to English text with LATEX-formatting. The
translation is done by implementing an abstract grammar
for the UML model of OCL, a concrete grammar for OCL
expressions and a concrete grammar for English. The text
to text translation is then done by obtaining an abstract
tree through parsing the OCL-expression, then linearizing
the tree in English. Since we do not have a grammar for our
graphical models we instead use the metamodel of xtUML
to generate the necessary linearisation grammars.

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusion
From our generated text it is possible to see if the mo-

tivations and intentions of the CIM are captured by the
PIM. The texts also paraphrases the structure of the class

diagram, enabling stakeholders with various backgrounds to
participate in the validation of the PIM. In the process we
have transformed the class diagram into an intermediate lin-
guistic model which ensures that the generated texts are
grammatically correct.

7.2 Future Work
From our case study we have identified two lines of future

work that we find interesting. The first line is to generate
other views of the PIM, the second line is to make more use
of the Grammatical Framework.

So far we have looked at the static structure of the class
diagram. Another aspect worth looking in to is the dynamic
behaviour of the software. This can be done by transforming
the Action language code into textual comments, adopting
the results from [32] to xtUML and MDA. This will then be
combined with natural language descriptions of the statema-
chines since they play a key role in the behaviour of objects.

There are several ways to make more use of GF. [6] enrich
their generated texts with LATEX, something that could be
used to highlight the motivations or for supplying tags for
colour and fonts to the texts. We also want to make more
use of GF’s capacity for several concrete languages to share
the same abstract syntax. Being able to generate a vari-
ety of languages from internal system specifications would
mean that the models can be accessed and evaluated by
those stakeholders that are not confident in using English.
One of the new languages could be a formal language for
writing requirements and then GF could be used to both
generate natural language descriptions, formal requirements
and translate between the two.

Both lines of work will in the end require a more rigorous
evaluation, both to obtain the desired format and content
of the texts but also to see in which extent they can replace
the original CIM.

Acknowledgments
The authors want to thank the Graduate School of Language
Technology for partially funding our work. Toni Siljamäki
at Ericsson AB and Leon Moonen at Simula Research Lab-
oratory gave comments and tips on issues concerning MDA
while Peter Ljunglöf and Aarne Ranta at Computer Science
and Engineering gave advice on issues concerning Natural
Language Generation and Grammatical Framework.

8. REFERENCES
[1] S. Andersson and T. Siljamäki. Proof of concept -

reuse of PIM, experience report. In SPLST’09 &
NW-MODE’09: Proceedings of 11th Symposium on
Programming Languages and Software Tools and 7th
Nordic Workshop on Model Driven Software
Engineering, Tampere, Finland, August 2009.

[2] J. Arlow, W. Emmerich, and J. Quinn. Literate
Modelling - Capturing Business Knowledge with the
UML. In Selected papers from the First International
Workshop on The Unified Modeling Language
UML’98: Beyond the Notation, pages 189–199,
London, UK, 1999. Springer-Verlag.

[3] BridgePoint. http://www.mentor.com/. Accessed 8th
March 2011.

[4] B. Bringert, R. Cooper, P. Ljunglöf, and A. Ranta.
Multimodal dialogue system grammars. In Proceedings

of DIALOR’05, Ninth Workshop on the Semantics
and Pragmatics of Dialogue, pages 53–60, June 2005.

[5] P. Brosch and A. Randak. Position paper: m2n-a tool
for translating models to natural language
descriptions. Electronic Communications of the
EASST, Software Modeling in Education at MODELS
2010(34), 2010.

[6] D. A. Burke and K. Johannisson. Translating formal
software specifications to natural language. In
P. Blache, E. P. Stabler, J. Busquets, and R. Moot,
editors, LACL, volume 3492 of Lecture Notes in
Computer Science, pages 51–66. Springer, 2005.

[7] J. Cabot, R. Pau, and R. Raventós. From uml/ocl to
sbvr specifications: A challenging transformation. Inf.
Syst., 35(4):417–440, 2010.

[8] C. Fellbaum and G. A. Miller. WordNet: An electronic
lexical database. MIT Press, Cambridge, MA, 1998.

[9] D. Firesmith. Modern requirements specification.
Journal of Object Technology, 2(2):53–64, 2003.

[10] R. Hähnle, K. Johannisson, and A. Ranta. An
authoring tool for informal and formal requirements
specifications. In R.-D. Kutsche and H. Weber,
editors, FASE, volume 2306 of Lecture Notes in
Computer Science, pages 233–248. Springer, 2002.

[11] C. F. J. Lange, B. D. Bois, M. R. V. Chaudron, and
S. Demeyer. An experimental investigation of UML
modeling conventions. In O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, editors, MoDELS, volume
4199 of Lecture Notes in Computer Science, pages
27–41. Springer, 2006.

[12] S. Larsson and J. Villing. The dico project: A
multimodal menu-based in-vehicle dialogue system. In
Proceedings of the 7th International Workshop on
Computational Semantics (IWCS-7), Tilburg, The
Netherlands. IWCS, 2007.

[13] P. Ljunglöf. Editing syntax trees on the surface. In
Nodalida’11: 18th Nordic Conference of
Computational Linguistics, volume 11, Riga, Latvia,
2011. NEALT Proceedings Series.

[14] S. J. Mellor and M. Balcer. Executable UML: A
Foundation for Model-Driven Architectures.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[15] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise. MDA
Distilled. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 2004.

[16] F. Meziane, N. Athanasakis, and S. Ananiadou.
Generating Natural Language Specifications from
UML Class Diagrams. Requir. Eng., 13(1):1–18, 2008.

[17] J. Miller and J. Mukerji. MDA Guide Version 1.0.1.
Technical report, Object Management Group (OMG),
2003.

[18] P. Mohagheghi and J. Aagedal. Evaluating quality in
model-driven engineering. In MISE ’07: Proceedings of
the International Workshop on Modeling in Software
Engineering, page 6, Washington, DC, USA, 2007.
IEEE Computer Society.

[19] Molto - Multilingual On-line Translation.
http://www.molto-project.eu/. Accessed 1st July
2011.

[20] P. Naur. Programming as theory building.
Microprocessing and Microprogramming, 15(5):253 –
261, 1985.

[21] J. Nicolás and J. A. T. Álvarez. On the generation of
requirements specifications from software engineering
models: A systematic literature review. Information &
Software Technology, 51(9):1291–1307, 2009.

[22] OMG. Object Constraint Language Version 2.2.
http://www.omg.org/spec/OCL/2.2/. Accessed 13th
September 2010.

[23] OMG. OMG Unified Modeling Language (OMG
UML) Infrastructure Version 2.3.
http://www.omg.org/spec/UML/2.3/. Accessed 11th
September 2010.

[24] OMG. Semantics of Business Vocabulary and Rules
(SBVR) Version 1.0, ormal/08-01-02 edition, January
2008.

[25] OMG. MDA. http://www.omg.org/mda/, Accessed
January 2011.

[26] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes,
17:40–52, October 1992.

[27] C. Raistrick, P. Francis, J. Wright, C. Carter, and
I. Wilkie. Model Driven Architecture with Executable
UMLTM. Cambridge University Press, New York, NY,
USA, 2004.

[28] A. Ranta. Grammatical Framework: Programming
with Multilingual Grammars. CSLI Publications,
Stanford, 2011.

[29] E. Reiter and R. Dale. Building applied natural
language generation systems. Nat. Lang. Eng.,
3:57–87, March 1997.

[30] S. Shlaer and S. J. Mellor. Object lifecycles: modeling
the world in states. Yourdon Press, Upper Saddle
River, NJ, USA, 1992.

[31] T. Siljamäki and S. Andersson. Performance
benchmarking of real time critical function using
BridgePoint xtUML. NW-MoDE’08: Nordic Workshop
on Model Driven Engineering. Reykjavik, Iceland,
August 2008.

[32] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings
of the IEEE/ACM international conference on
Automated software engineering, ASE ’10, pages
43–52, New York, NY, USA, 2010. ACM.

[33] L. Starr. How to build articulate UML class models.
http://knol.google.com/k/leon-starr/how-to-build-
articulate-uml-class-models/2hnjef6cmm97l/4.
Accessed 24th November 2009.

[34] L. Starr. Executable UML: How to Build Class Models.
Prentice Hall PTR, Upper Saddle River, NJ, USA,
2001.

[35] The TALK Project. http://www.talk-project.org/.
Accessed 1st July 2011.

[36] J. Warmer and A. Kleppe. The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2 edition, 2003.

