Resource Grammars and Language Learning and Evolution

Robin Cooper Department of Philosophy, Linguistics and Theory of Science University of Gothenburg cooper@ling.gu.se

Resources for building (formal) languages (with Aarne Ranta)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Language learning and evolution (with Staffan Larsson)

Resources for building (formal) languages (with Aarne Ranta)

Language learning and evolution (with Staffan Larsson)

Natural and formal languages in 20th century linguistics

 languages as sets of strings and early transformational grammar

Natural and formal languages in 20th century linguistics

- languages as sets of strings and early transformational grammar
- interpreted languages as sets of string-meaning pairs

Natural and formal languages in 20th century linguistics

- languages as sets of strings and early transformational grammar
- interpreted languages as sets of string-meaning pairs
- Montague in 'Universal Grammar':

There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed I consider it possible to comprehend the syntax and semantics of both kinds of languages within a single natural and mathematically precise theory.

Natural languages as formal languages – the advantages

Natural languages as formal languages – the advantages

 productive theoretical abstraction allowing application of logical techniques to natural language

Natural languages as formal languages – the advantages

- productive theoretical abstraction allowing application of logical techniques to natural language
- a basis for much computational processing of language

grammaticality

grammaticality

degrees of grammaticality

grammaticality

- degrees of grammaticality
- context-dependent grammaticality

grammaticality

- degrees of grammaticality
- context-dependent grammaticality
- speakers adapt the language to new situations and domains, changing grammaticality judgements

grammaticality

- degrees of grammaticality
- context-dependent grammaticality
- speakers adapt the language to new situations and domains, changing grammaticality judgements

grammaticality

- degrees of grammaticality
- context-dependent grammaticality
- speakers adapt the language to new situations and domains, changing grammaticality judgements

meaning

 words and phrases do not have a fixed range of interpretations

grammaticality

- degrees of grammaticality
- context-dependent grammaticality
- speakers adapt the language to new situations and domains, changing grammaticality judgements

- words and phrases do not have a fixed range of interpretations
- speakers adapt meaning to the subject matter

grammaticality

- degrees of grammaticality
- context-dependent grammaticality
- speakers adapt the language to new situations and domains, changing grammaticality judgements

- words and phrases do not have a fixed range of interpretations
- speakers adapt meaning to the subject matter
- speakers negotiate meaning in dialogue

grammaticality

- degrees of grammaticality
- context-dependent grammaticality
- speakers adapt the language to new situations and domains, changing grammaticality judgements

- words and phrases do not have a fixed range of interpretations
- speakers adapt meaning to the subject matter
- speakers negotiate meaning in dialogue
 - same proper name for different individuals

grammaticality

- degrees of grammaticality
- context-dependent grammaticality
- speakers adapt the language to new situations and domains, changing grammaticality judgements

- words and phrases do not have a fixed range of interpretations
- speakers adapt meaning to the subject matter
- speakers negotiate meaning in dialogue
 - same proper name for different individuals
 - abstract or theoretical concepts like democracy or meaning

 a collection of resources (a "toolbox") which can be used to construct (formal) languages

- a collection of resources (a "toolbox") which can be used to construct (formal) languages
- maintain the insights and precision gained from the formal language view

- a collection of resources (a "toolbox") which can be used to construct (formal) languages
- maintain the insights and precision gained from the formal language view
- speakers of natural languages are constantly in the process of creating new language to meet the needs of novel situations in which they find themselves

- a collection of resources (a "toolbox") which can be used to construct (formal) languages
- maintain the insights and precision gained from the formal language view
- speakers of natural languages are constantly in the process of creating new language to meet the needs of novel situations in which they find themselves
- A corpus of natural language data (even a single dialogue) is not required to be consistent either in terms of grammaticality or in terms of meaning since it represents output based on a collection of related grammars rather than a single grammar.

Resources for building (formal) languages (with Aarne Ranta) Language learning and evolution (with Staffan Larsson)

Scaling up to multilingual grammar the GF way

Scaling up/down to local domain grammars the GF way

Importation of definitions

9/43

Resources for building (formal) languages (with Aarne Ranta) Language learning and evolution (with Staffan Larsson)

Reusing the resource grammar in GF

Resources for building (formal) languages (with Aarne Ranta) Language learning and evolution (with Staffan Larsson)

Coordination

୬ < ୍ 11 / 43

Resources for building (formal) languages (with Aarne Ranta)

Language learning and evolution (with Staffan Larsson)

Resources for building (formal) languages (with Aarne Ranta) Language learning and evolution (with Staffan Larsson)

Semantic coordination

agents negotiate domain-specific microlanguages

Resources for building (formal) languages (with Aarne Ranta) Language learning and evolution (with Staffan Larsson)

Semantic coordination

- agents negotiate domain-specific microlanguages
- linguistic resources can change during the course of a dialogue: alignment/coordination (Clark, Garrod and Anderson, Pickering and Garrod, Larsson, ...)

Semantic coordination

- agents negotiate domain-specific microlanguages
- linguistic resources can change during the course of a dialogue: alignment/coordination (Clark, Garrod and Anderson, Pickering and Garrod, Larsson, ...)
- natural languages as toolboxes for constructing local microlanguages (Cooper and Ranta)

Semantic coordination

- agents negotiate domain-specific microlanguages
- linguistic resources can change during the course of a dialogue: alignment/coordination (Clark, Garrod and Anderson, Pickering and Garrod, Larsson, ...)
- natural languages as toolboxes for constructing local microlanguages (Cooper and Ranta)
- speakers of natural languages are constantly in the process of creating new language to meet the needs of novel situations in which they find themselves

Requirements for a theory of semantic coordination

- semantics: an account of how meanings (and concepts) can be updated
 - dynamic representations of concepts which can be modified in various ways (Type theory with records, TTR)

Requirements for a theory of semantic coordination

- semantics: an account of how meanings (and concepts) can be updated
 - dynamic representations of concepts which can be modified in various ways (Type theory with records, TTR)
- pragmatics: an account of how meanings (and concepts) are coordinated in dialogue and how dialogue moves governing coordination are related to semantic updates
 - a description of dialogue strategies involved in semantic coordination (Information State Update, ISU)
Corrective feedback

A frequent pattern in corrective feedback is the following: original utterance A says something innovative utterance B says something parallel to A's utterance, containing a use which is innovative for A learning step A learns from the innovative use

In-repair

Abe: I'm trying to tip this over, can you tip it over? Can you tip it over? Mother: Okay I'll turn it over for you.

- offer-form:in-repair("turn", "_ it over")
- offer-form("turn", "tip")

Clarification request

Adam: Mommy, where my plate? Mother: You mean your saucer?

- offer-form:cr("saucer", "[poss] _ ")
- offer-form("saucer", "plate")

Explicit replace

Naomi: Birdie birdie. Mother: Not a birdie, a seal.

- offer-form:explicit-replace("seal", "birdie")
- offer-form("seal", "birdie")

Bare correction

Naomi: mittens. Father: gloves.

- offer-form:bare("gloves")
- offer-form("gloves", "mittens")

Talking about mittens

Talking about gloves (when you only know about mittens)

Compositional and ontological semantics

4 ロ ト 4 回 ト 4 目 ト 4 目 ト 目 今 Q ペ 22 / 43

Enriching the local lexicon

Updates

dialogue moves associated with information state updates

Updates

- dialogue moves associated with information state updates
- semantic coordination updates involve linguistic resources (grammar, lexicon, semantic interpretation rules, ...), i.e. not the standard conversational scoreboard

Updates

- dialogue moves associated with information state updates
- semantic coordination updates involve linguistic resources (grammar, lexicon, semantic interpretation rules, ...), i.e. not the standard conversational scoreboard
- agents construct local resources for sublanguages used in specific situations

Generic and domain resources

an agent A may associate a linguistic expression c with a particular concept (or collection of concepts if c is ambiguous)
[c]^A in its generic resource

- an agent A may associate a linguistic expression c with a particular concept (or collection of concepts if c is ambiguous)
 [c]^A in its generic resource
- ▶ in a particular domain *α c* may be associated with a modified version of [c]^A, [c]^A_α

- an agent A may associate a linguistic expression c with a particular concept (or collection of concepts if c is ambiguous)
 [c]^A in its generic resource
- ▶ in a particular domain *α c* may be associated with a modified version of [c]^A, [c]^A_α
- ▶ [c]^A_α may contain a smaller number of concepts than [c]^A, representing a decrease in ambiguity

- an agent A may associate a linguistic expression c with a particular concept (or collection of concepts if c is ambiguous)
 [c]^A in its generic resource
- ▶ in a particular domain *α c* may be associated with a modified version of [c]^A, [c]^A_α
- ▶ [c]^A_α may contain a smaller number of concepts than [c]^A, representing a decrease in ambiguity
- ► concepts in [c]^A_α may be a *refinement* of one in [c]^A, that is, the domain related concepts have an extension which is a proper subset of the extension of the corresponding generic concept

- an agent A may associate a linguistic expression c with a particular concept (or collection of concepts if c is ambiguous)
 [c]^A in its generic resource
- ▶ in a particular domain α c may be associated with a modified version of [c]^A, [c]^A_α
- ▶ [c]^A_α may contain a smaller number of concepts than [c]^A, representing a decrease in ambiguity
- ► concepts in [c]^A_α may be a *refinement* of one in [c]^A, that is, the domain related concepts have an extension which is a proper subset of the extension of the corresponding generic concept
- this will not be the case in general, e.g. black hole in physics not a black hole in the general sense, variables in logic and experimental psychology

 motor for generating new local resources – coordinating resources with another agent in a particular communicative situation s

- motor for generating new local resources coordinating resources with another agent in a particular communicative situation s
- s might be a turn in a dialogue, a reading event, ...

- motor for generating new local resources coordinating resources with another agent in a particular communicative situation s
- s might be a turn in a dialogue, a reading event, ...
- an agent A may be confronted with an *innovative* utterance c in s

- motor for generating new local resources coordinating resources with another agent in a particular communicative situation s
- s might be a turn in a dialogue, a reading event, ...
- an agent A may be confronted with an *innovative* utterance c in s
- i.e. an utterance which either uses linguistic expressions not already present in A's resources or linguistic expressions known by A but associated with an interpretation distinct from that provided by A's resources

- motor for generating new local resources coordinating resources with another agent in a particular communicative situation s
- s might be a turn in a dialogue, a reading event, ...
- an agent A may be confronted with an *innovative* utterance c in s
- i.e. an utterance which either uses linguistic expressions not already present in A's resources or linguistic expressions known by A but associated with an interpretation distinct from that provided by A's resources
- A has to accommodate an interpretation for c which is specific to s, [c]^A_s

- motor for generating new local resources coordinating resources with another agent in a particular communicative situation s
- s might be a turn in a dialogue, a reading event, ...
- an agent A may be confronted with an *innovative* utterance c in s
- i.e. an utterance which either uses linguistic expressions not already present in A's resources or linguistic expressions known by A but associated with an interpretation distinct from that provided by A's resources
- ➤ A has to accommodate an interpretation for c which is specific to s, [c]^A_s
- [c]^A_s may be anchored to the specific objects under discussion in s

A hierarchy of interpretations for expressions c

• $[c]_s^A$ for communicative situations s

- $[c]_s^A$ for communicative situations s
- $[c]^{A}_{\alpha}$ for domains α

- $[c]_s^A$ for communicative situations s
- $[c]^{A}_{\alpha}$ for domains α
- domains are collected into a complex hierarchy or more and less general domains

- $[c]_s^A$ for communicative situations s
- $[c]^{A}_{\alpha}$ for domains α
- domains are collected into a complex hierarchy or more and less general domains
- ► [c]^A a domain independent linguistic resource

Acquisition of expression-interpretation pairs

a pairing of an expression c with an interpretation c' progresses through the hierarchy

Acquisition of expression-interpretation pairs

- a pairing of an expression c with an interpretation c' progresses through the hierarchy
- c' is $[c]_s^A$ for some particular communicative situation s

Acquisition of expression-interpretation pairs

- a pairing of an expression c with an interpretation c' progresses through the hierarchy
- c' is $[c]_s^A$ for some particular communicative situation s
- ▶ $c' \in [c]^A_{\alpha}$ for a series of increasingly general domains α

Acquisition of expression-interpretation pairs

- a pairing of an expression c with an interpretation c' progresses through the hierarchy
- c' is $[c]_s^A$ for some particular communicative situation s
- $c' \in [c]^A_{\alpha}$ for a series of increasingly general domains α
- ▶ $c' \in [c]^A$, i.e. part of a domain independent generic resource

no guarantee that any expression-interpretation pair will survive even beyond the particular communicative situation in which A first encountered it

- no guarantee that any expression-interpretation pair will survive even beyond the particular communicative situation in which A first encountered it
- stochastic criteria for progression

- no guarantee that any expression-interpretation pair will survive even beyond the particular communicative situation in which A first encountered it
- stochastic criteria for progression
- ▶ the degree to which A regards their interlocutor as an expert
Factors affecting progression through the hierarchy

- no guarantee that any expression-interpretation pair will survive even beyond the particular communicative situation in which A first encountered it
- stochastic criteria for progression
- ▶ the degree to which A regards their interlocutor as an expert
- how many times the pairing has been observed in other communicative situations and with different interlocutors

Factors affecting progression through the hierarchy

- no guarantee that any expression-interpretation pair will survive even beyond the particular communicative situation in which A first encountered it
- stochastic criteria for progression
- ▶ the degree to which A regards their interlocutor as an expert
- how many times the pairing has been observed in other communicative situations and with different interlocutors
- the utility of the interpretation in different communicative situation

Factors affecting progression through the hierarchy

- no guarantee that any expression-interpretation pair will survive even beyond the particular communicative situation in which A first encountered it
- stochastic criteria for progression
- ▶ the degree to which A regards their interlocutor as an expert
- how many times the pairing has been observed in other communicative situations and with different interlocutors
- the utility of the interpretation in different communicative situation
- positive or negative feedback obtained when using the pairing in a communicative situation

Representing concepts using TTR

Type Theory with Records

Why TTR?

Why TTR?

 integrates logical techniques such as binding and the lambda-calculus into feature-structure like objects called record types

Why TTR?

- integrates logical techniques such as binding and the lambda-calculus into feature-structure like objects called record types
- more structure than in a traditional formal semantics and more logic than is available in traditional unification-based systems

Why TTR?

- integrates logical techniques such as binding and the lambda-calculus into feature-structure like objects called record types
- more structure than in a traditional formal semantics and more logic than is available in traditional unification-based systems
- feature structure like properties are important for developing similarity metrics on meanings and for the straightforward definition of meanings modifications involving refinement and generalization

Why TTR?

- integrates logical techniques such as binding and the lambda-calculus into feature-structure like objects called record types
- more structure than in a traditional formal semantics and more logic than is available in traditional unification-based systems
- feature structure like properties are important for developing similarity metrics on meanings and for the straightforward definition of meanings modifications involving refinement and generalization
- logical aspects are important for relating our semantics to the model and proof theoretic tradition associated with compositional semantics

Records and record types

	ref	:	Ind
Record type	size	:	size(ref, MuchBiggerThanMe)
	shape	:	shape(ref, BearShape)

Records and record types

	[ref	: Ind	
Record type	size	: size(ref, MuchBiggerThan	Me)
	shape	: shape(ref, BearShape)	
	[ref	= obj123]
Record	size	= sizesensorreading85	
	shape	= shapesensorreading 62	
	colour	= coloursensorreadning78	

Types containing manifest fields

ref=obj123	:	Ind
size	:	size(ref, MuchBiggerThanMe)
shape	:	shape(ref, BearShape)

Type hierarchies

```
[ ref : Ind
size : size(ref, MuchBiggerThanMe) ]
is a subtype of
[ ref : Ind ]
```

Type hierarchies

```
[ ref : Ind
size : size(ref, MuchBiggerThanMe) ]
is a subtype of
[ ref : Ind ]
as is also
[ ref=obj123 : Ind ]
```

The panda

A: That's a nice bear B: Yes, it's a nice panda

offer-form:in-repair("panda", "is a nice _ ")
offer-form("panda", "bear")

A's concept "bear" in the "zoo" domain

We assume that, before *B*'s utterance, *A* has a single concept of "bear" in a domain called "zoo", that is, a unique member of the collection $[bear]^A_{zoo}$.

ref	:	Ind]	
phys	:	phys-obj(ref)	
anim	:	animate(ref)	
size	:	size(ref, MuchBiggerThanMe)	
shape	:	shape(ref, BearShape)	
bear	:	bear(ref)	

A's take on the communicative situation

A's dialogue information state at the time of B's utterance (much simplified)

$$\begin{bmatrix} \text{domain} & : & \text{zoo} \\ & & & \\ \text{shared} & : & \begin{bmatrix} \text{foo}=obj123 & & : & \text{Ind} \\ & & \\ \text{com}=\begin{bmatrix} c_1 & : & \text{nice(foo)} \\ c_2 & : & \text{bear(foo)} \end{bmatrix} & : & \text{RecType} \end{bmatrix} \end{bmatrix}$$

A creates a local "panda"-concept

 [panda]^A_s where s is the communicative situation resulting from B's utterance

- [panda]^A_s where s is the communicative situation resulting from B's utterance
- since "panda" has been offered as an alternative for "bear", the new "panda"-concept is based on the "bear"-concept

- [panda]^A_s where s is the communicative situation resulting from B's utterance
- since "panda" has been offered as an alternative for "bear", the new "panda"-concept is based on the "bear"-concept
- should 'panda(REF)' replace 'bear(REF)' or be added? is panda a daughter or a sister of bear in the ontology?

- [panda]^A_s where s is the communicative situation resulting from B's utterance
- since "panda" has been offered as an alternative for "bear", the new "panda"-concept is based on the "bear"-concept
- should 'panda(REF)' replace 'bear(REF)' or be added? is panda a daughter or a sister of bear in the ontology?
- assuming the principle of contrast (Clark), find a way in which pandas differ from bears

- [panda]^A_s where s is the communicative situation resulting from B's utterance
- since "panda" has been offered as an alternative for "bear", the new "panda"-concept is based on the "bear"-concept
- should 'panda(REF)' replace 'bear(REF)' or be added? is panda a daughter or a sister of bear in the ontology?
- assuming the principle of contrast (Clark), find a way in which pandas differ from bears
- create first a local situated interpretation [panda]^A_s based on [bear]^A_{zoo}

$[panda]_s^A$

ref= <i>obj</i> 123	:	Ind
phys	:	phys-obj(ref)
anim	:	animate(ref)
size	:	size(ref, MuchBiggerThanMe)
shape	:	shape(ref, BearShape)
colour	:	colour(ref, BlackAndWhite)
panda	:	panda(ref)

$[bear]_s^A$

 ${\it A}$ refines the local "bear"-concept corresponding to the newly formed local "panda"-concept

- ref	:	Ind
phys	:	phys-obj(ref)
anim	:	animate(ref)
size	:	size(ref, MuchBiggerThanMe)
shape	:	shape(ref, BearShape)
colour	:	colour(ref, Brown)
bear	:	bear (ref)

A's updated dialogue information state

A dereferenced panda-concept

ref	:	Ind
phys	:	phys-obj(ref)
anim	:	animate(ref)
size	:	size(ref, MuchBiggerThanMe)
shape	:	shape(ref, BearShape)
colour	:	colour(ref, BlackAndWhite)
panda	:	panda(ref)

Available for use as $[panda]^A_{zoo}$, and for progression through the meaning hierarchy.

Further reading

- http://www.ling.gu.se/~cooper/records
- http://www.flov.gu.se/english/research/Semantic_ Coordination_in_Dialogue/