
GF Tutorial for Resource Grammar Writers

Aarne Ranta

April 2009

Goals

Fast way to resource grammar writing

Practical use of GF

Linguistic concepts in the resource grammar library

For full details, read the Tutorial at GF homepage, digitalgrammars.com/gf

http://digitalgrammars.com/gf/

Contents of the course’s five lectures

1. The GF system, simple multilingual grammars

2. Morphological paradigms and lexica

3. Building up a linguistic syntax

4. Using the Resource Grammar Library in applications

5. Inside the Resource Grammar Library

Lecture 1

The GF system

Simple Multilingual Grammars

Contents

What GF is

Installing the GF system

A grammar for John loves Mary in English, French, Latin, German,

Hebrew

Testing grammars and building applications

The scope of the Resource Grammar Library

Exercises

GF = Grammatical Framework

GF is a grammar formalism: a notation for writing grammars

GF is a functional programming language with types and modules

GF programs are called grammars

A grammar is a declarative program that defines

• parsing

• generation

• translation

Multilingual grammars

Many languages related by a common abstract syntax

The GF program

Interpreter for testing grammars (the GF shell)

Compiler for converting grammars to useful formats

• PGF, Portable Grammar Format

• speech recognition grammars (Nuance, HTK, ...)

• JavaScript

The GF Resource Grammar Library

Morphology and basic syntax

Common API for different languages

Currently (April 2009) 13 languages: Bulgarian, Catalan, Danish, En-

glish, Finnish, French, German, Interlingua, Italian, Norwegian, Rus-

sian, Spanish, Swedish.

Under construction for 7 languages: Arabic, Hindi, Latin, Polish, Ro-

manian, Thai, Turkish.

GF run-time system

PGF grammars can be embedded in Haskell, Java, and Prolog pro-

grams

They can be used in web servers

• fridge magnet demo: tournesol.cs.chalmers.se:41296/fridge

• translator demo: tournesol.cs.chalmers.se:41296/translate

http://tournesol.cs.chalmers.se:41296/fridge
http://tournesol.cs.chalmers.se:41296/translate

Download and install the GF system

Go to the GF home page, and follow shortcuts to either

• Download: download and install binaries

• Developers: download sources, compile, and install

The Developers method is recommended for resource grammar devel-

opers:

• latest updates and bug fixes

• version control system

Starting the GF shell

The command gf starts the GF shell:

$ gf

* * *
* *

* *
*
*
* * * * * * *
* * *
* * * * * *

* * *
* * *

This is GF version 3.0-beta3.
License: see help -license.
Differences from GF 2.9: see help -changes.
Bug reports: http://trac.haskell.org/gf/

Languages:
>

Using the GF shell: help

Command h = help

> help

gives a list of commands with short descriptions.

> help parse

gives detailed help on the command parse.

Commands have both short (1 or 2 letters) and long names.

Context-free grammars in GF

These are the simplest grammars usable in GF. Example:

Pred. S ::= NP VP ;

Compl. VP ::= V2 NP ;

John. NP ::= "John" ;

Mary. NP ::= "Mary" ;

Love. V2 ::= "loves" ;

The first item in each rule is a syntactic function, used for building

trees: Pred = predication, Compl = complementation.

The second item is a category: S = Sentence, NP = Noun Phrase,

VP = Verb Phrase, V2 = 2-place Verb.

Importing and parsing

Copy or write the above grammar in file zero.cf.

To use a grammar in GF: import = i

> i zero.cf

To parse a string to a tree: parse = p

> p "John loves Mary"

Pred John (Compl Love Mary)

Parsing is, by default, in category S. This can be overridden.

Random generation, linearization, and pipes

Generate a random tree: generate random = gr

> gr

Pred Mary (Compl Love Mary)

To linearize a tree to a string: linearize = l

> l Pred Mary (Compl Love Mary)

Mary loves Mary

To pipe a command to another one: |

> gr | l

Mary loves Mary

Graphical view of trees

> p "John loves Mary" | visualize_tree -view=open

Abstract and concrete syntax

A context-free rule

Pred. S ::= NP VP

defines two things:

• abstract syntax: build a tree of form Pred np vp

• concrete syntax: this tree linearizes to a string of form np vp

The main idea of GF: separate these two things.

Separating abstract and concrete syntax

A context-free rule is converted to two judgements in GF:

• fun, declaring a syntactic function

• lin, giving its linearization rule

Pred. S ::= NP VP ===> fun Pred : NP -> VP -> S

lin Pred np vp = np ++ vp

Functions and concatenation

Function type: A -> B -> C, read ”function from A and B to C”

Function application: f a b, read ”f applied to arguments a and b”

Concatenation: x ++ y, read ”string x followed by string y”

Cf. functional programming in Haskell.

Notice: in GF, ++ is between token lists and therefore ”creates a

space”.

From context-free to GF grammars

The grammar is divided to two modules

• an abstract module, judgement forms cat and fun

• a concrete module, judgement forms lincat and lin

Judgement reading
catC C is a category
fun f : T f is a function of type T
lincat C = L C has linearization type L
lin f xs = t f xs has linearization t

Abstract syntax, example

abstract Zero = {

cat

S ; NP ; VP ; V2 ;

fun

Pred : NP -> VP -> S ;

Compl : V2 -> NP -> VP ;

John, Mary : NP ;

Love : V2 ;

}

Concrete syntax, English

concrete ZeroEng of Zero = {

lincat

S, NP, VP, V2 = Str ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2 ++ np ;

John = "John" ;

Mary = "Mary" ;

Love = "loves" ;

}

Notice: Str (token list, ”string”) as the only linearization type.

Multilingual grammar

One abstract + many concretes

The same system of trees can be given

• different words

• different word orders

• different linearization types

Concrete syntax, French

concrete ZeroFre of Zero = {

lincat

S, NP, VP, V2 = Str ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2 ++ np ;

John = "Jean" ;

Mary = "Marie" ;

Love = "aime" ;

}

Just use different words

Translation and multilingual generation

Import many grammars with the same abstract syntax

> i ZeroEng.gf ZeroFre.gf

Languages: ZeroEng ZeroFre

Translation: pipe linearization to parsing

> p -lang=ZeroEng "John loves Mary" | l -lang=ZeroFre

Jean aime Marie

Multilingual generation: linearize into all languages

> gr | l

Pred Mary (Compl Love Mary)

Mary loves Mary

Marie aime Marie

Multilingual treebank

Treebank: show both trees and their linearizations

> gr | l -treebank

Zero: Pred Mary (Compl Love Mary)

ZeroEng: Mary loves Mary

ZeroFre: Marie aime Marie

Concrete syntax, Latin

concrete ZeroLat of Zero = {

lincat

S, VP, V2 = Str ;

NP = Case => Str ;

lin

Pred np vp = np ! Nom ++ vp ;

Compl v2 np = np ! Acc ++ v2 ;

John = table {Nom => "Ioannes" ; Acc => "Ioannem"} ;

Mary = table {Nom => "Maria" ; Acc => "Mariam"} ;

Love = "amat" ;

param

Case = Nom | Acc ;

}

Different word order (SOV), different linearization type, parameters.

Parameters in linearization

Latin has cases: nominative for subject, accusative for object.

• Ioannes Mariam amat ”John-Nom loves Mary-Acc”

• Maria Ioannem amat ”Mary-Nom loves John-Acc”

Parameter type for case (just 2 of Latin’s 6 cases):

param Case = Nom | Acc

Table types and tables

The linearization type of NP is a table type: from Case to Str,

lincat NP = Case => Str

The linearization of John is an inflection table,

lin John = table {Nom => "Ioannes" ; Acc => "Ioannem"}

When using an NP, select (!) the appropriate case from the table,

Pred np vp = np ! Nom ++ vp

Compl v2 np = np ! Acc ++ v2

Concrete syntax, German

concrete ZeroGer of Zero = {

lincat

S, NP, VP = Str ;

V2 = {v : Str ; p : Str} ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2.v ++ np ++ v2.p ;

John = "Johann" ;

Mary = "Maria" ;

Love = {v = "hat" ; p = "lieb"} ;

}

The verb hat lieb is a discontinuous constituent: Johann hat Maria
lieb (contrived, since we also have liebt).

Record types and records

The linearization type of V2 is a record type with two fields

lincat V2 = {v : Str ; p : Str}

The linearization of Love is a record

lin Love = {v = "hat" ; p = "lieb"}

The values of fields are picked by projection (.)

lin Compl v2 np = v2.v ++ np ++ v2.p

Concrete syntax, Hebrew

The verb agrees to the gender of the subject.

Variable and inherent features, agreement

NP has gender as its inherent feature - a field in the record

lincat NP = {s : Str ; g : Gender}

lin Mary = {s = "mry" ; g = Fem}

VP has gender as its variable feature - an argument of a table

lincat VP = Gender => Str

In predication, the VP receives the gender of the NP

lin Pred np vp = np.s ++ vp ! np.g

Feature design

Deciding on variable and inherent features is central in GF program-

ming.

Good hint: dictionaries give forms of variable features and values of

inherent ones.

Example: French nouns

• cheval pl. chevaux masc. noun

From this we infer that French nouns have variable number and inher-

ent gender

lincat N = {s : Number => Str ; g : Gender}

Word alignment

> p -lang=ZeroEng "Mary loves John" | align_words -view=open

Building applications

Compile the grammar to PGF:

$ gf --batch --make ZeroEng.gf ZeroFre.gf ZeroLat.gf ZeroGer.gf ZeroHeb.gf

The resulting file Zero.pgf can be e.g. included in fridge magnets:

Scaling up the grammar

Zero.gf is a tiny fragment of the Resource Grammar

The current Resource Grammar has 80 categories, 200 syntactic func-

tions, and a minimal lexicon of 500 words.

Even S, NP, VP, V2 will need richer linearization types.

More to do on sentences

The category S has to take care of

• tenses: John has loved Mary

• negation: John doesn’t love Mary

• word order (German): wenn Johann Maria lieb hat, hat Maria Jo-

hann lieb

Moreover: questions, imperatives, relative clauses

More to do on noun phrases

NP also involves

• pronouns: I, you, she, we

• determiners: the man, every place

Moreover: common nouns, adjectives

Exercises

1. Install gf on your computer.

2. Learn and try out the commands align words, empty, generate random,

generate trees, help, import, linearize, parse, put string, quit, read file,

translation quiz, unicode table, visualize tree, write file.

3. Write a concrete syntax of Zero for yet another language (e.g. your

summer school project language).

4. Extend the Zero grammar with ten new noun phrases and verbs.

5. Add to the Zero grammar a category A of adjectives and a function

ComplA : A -> VP, which forms verb phrases like is old.

Lecture 2

Morphological Paradigms

and Lexica

Contents

Morphology, inflection, paradigm - example: English verbs

Regular patterns and smart paradigms

Overloaded operations

Inherent features in the lexicon

Building and bootstrapping a lexicon

Nonconcatenative morphology: Arabic

Morphology

Inflectional morphology: define the different forms of words

• English verb sing has the forms sing, sings, sang, sung, singing

Derivational morphology: tell how new words are formed from old

words

• English verb sing produces the noun singer

We could do both in GF, but concentrate now on inflectional morphol-

ogy.

Good start for a resource grammar

Complete inflection system: 1-6 weeks

Comprehensive lexicon: days or weeks

Morphological analysis: up to 200,000 words per second

Export to SQL, XFST, ...

What is a word?

In abstract syntax: an object of a basic type, such as Love : V2

In concrete syntax,

• primarily: an inflection table, the collection of all forms

• secundarily: a string, i.e. a single form

Thus love, loves, loved are

• distinct words as strings

• forms of the same word as an inflection table or an abstract syntax
object

Lexical categories

Part of speech = word class = lexical category

In GF, a part of speech is defined as a cat and its associated lincat.

In GF, there is no formal difference between lexical and other cats.

But in the resource grammar, we maintain a discipline of separate

lexical categories.

The main lexical categories in the resource grammar

cat name example
N noun house
A adjective small
V verb sleep
V2 two-place verb love
Adv adverb today

Typical feature design

cat variable inherent
N number, case gender
A number, case, gender, degree position
V tense, number, person, ... auxiliary
V2 as V complement case
Adv - -

Module structure

Resource module with inflection functions as operations

resource MorphoEng = {oper regV : Str -> V ; ...}

Lexicon: abstract and concrete syntax

abstract Lex = {fun Walk : V ; ...}

concrete LexEng of Lex =

open MorphoEng in {lin Walk = regV "walk" ; ...}

The same resource can be used (opened) in many lexica.

Abstract and concrete are top-level - they define trees, parsing, lin-
earization.

Resource modules and opers are not top-level - they are ”thrown away”
after compilation (i.e. not preserved in PGF).

Example: resource module for English verb inflection

Use the library module Prelude.

Start by defining parameter types and parts of speech.

resource Morpho = open Prelude in {

param

VForm = VInf | VPres | VPast | VPastPart | VPresPart ;

oper

Verb : Type = {s : VForm => Str} ;

Judgement form oper: auxiliary operation.

Start: worst-case function

To save writing and to abstract over the Verbtype

mkVerb : (_,_,_,_,_ : Str) -> Verb = \go,goes,went,gone,going -> {

s = table {

VInf => go ;

VPres => goes ;

VPast => went ;

VPastPart => gone ;

VPresPart => going

}

} ;

Testing computation in resource modules

Import with retain option

> i -retain Morpho.gf

Use command cc = compute concrete

> cc mkVerb "use" "uses" "used" "used" "using"

{s : Morpho.VForm => Str

= table Morpho.VForm {

Morpho.VInf => "use";

Morpho.VPres => "uses";

Morpho.VPast => "used";

Morpho.VPastPart => "used";

Morpho.VPresPart => "using"

}}

Defining paradigms

A paradigm is an operation of type

Str -> Verb

which takes a string and returns an inflection table.

Let’s first define the paradigm for regular verbs:

regVerb : Str -> Verb = \walk ->

mkVerb walk (walk + "s") (walk + "ed") (walk + "ed") (walk + "ing") ;

This will work for walk, interest, play.

It will not work for sing, kiss, use, cry, fly, stop.

More paradigms

For verbs ending with s, x, z, ch

s_regVerb : Str -> Verb = \kiss ->

mkVerb kiss (kiss + "es") (kiss + "ed") (kiss + "ed") (kiss + "ing") ;

For verbs ending with e

e_regVerb : Str -> Verb = \use ->

let us = init use

in mkVerb use (use + "s") (us + "ed") (us + "ed") (us + "ing") ;

Notice:

• the local definition let c = d in ...

• the operation init from Prelude, dropping the last character

More paradigms still

For verbs ending with y

y_regVerb : Str -> Verb = \cry ->

let cr = init cry

in

mkVerb cry (cr + "ies") (cr + "ied") (cr + "ied") (cry + "ing") ;

For verbs ending with ie

ie_regVerb : Str -> Verb = \die ->

let dy = Predef.tk 2 die + "y"

in

mkVerb die (die + "s") (die + "d") (die + "d") (dy + "ing") ;

What paradigm to choose

If the infinitive ends with s, x, z, ch, choose s regRerb: munch, munches

If the infinitive ends with y, choose y regRerb: cry, cries, cried

• except if a vowel comes before: play, plays, played

If the infinitive ends with e, choose e regVerb: use, used, using

• except if an i precedes: die, dying

• or if an e precedes: free, freeing

A smart paradigm

Let GF choose the paradigm by pattern matching on strings

smartVerb : Str -> Verb = \v -> case v of {

_ + ("s"|"z"|"x"|"ch") => s_regVerb v ;

_ + "ie" => ie_regVerb v ;

_ + "ee" => ee_regVerb v ;

_ + "e" => e_regVerb v ;

_ + ("a"|"e"|"o"|"u") + "y" => regVerb v ;

_ + "y" => y_regVerb v ;

_ => regVerb v

} ;

Pattern matching on strings

Format: case string of { pattern => value }

Patterns:

• matches any string

• a string in quotes matches itself: "ie"

• + splits into substrings: + "y"

• | matches alternatives: "a"|"e"|"o"

Common practice: last pattern a catch-all

Testing the smart paradigm

> cc -all smartVerb "munch"

munch munches munched munched munching

> cc -all smartVerb "die"

die dies died died dying

> cc -all smartVerb "agree"

agree agrees agreed agreed agreeing

> cc -all smartVerb "deploy"

deploy deploys deployed deployed deploying

> cc -all smartVerb "classify"

classify classifies classified classified classifying

The smart paradigm is not perfect

Irregular verbs are obviously not covered

> cc -all smartVerb "sing"

sing sings singed singed singing

Neither are regular verbs with consonant duplication

> cc -all smartVerb "stop"

stop stops stoped stoped stoping

The final consonant duplication paradigm

Use the Prelude function last

dupRegVerb : Str -> Verb = \stop ->

let stopp = stop + last stop

in

mkVerb stop (stop + "s") (stopp + "ed") (stopp + "ed") (stopp + "ing") ;

String pattern: relevant consonant preceded by a vowel

_ + ("a"|"e"|"i"|"o"|"u") + ("b"|"d"|"g"|"m"|"n"|"p"|"r"|"s"|"t")

=> dupRegVerb v ;

Testing consonant duplication

Now it works

> cc -all smartVerb "stop"

stop stops stopped stopped stopping

But what about

> cc -all smartVerb "coat"

coat coats coatted coatted coatting

Solution: a prior case for diphthongs before the last char (? matches

one char)

_ + ("ea"|"ee"|"ie"|"oa"|"oo"|"ou") + ? => regVerb v ;

There is no waterproof solution

Duplication depends on stress, which is not marked in English:

• omit [o’mit]: omitted, omitting

• vomit [’vomit]: vomited, vomiting

This means that we occasionally have to give more forms than one.

We knew this already for irregular verbs. And we cannot write patterns

for each of them either, because e.g. lie can be both lie, lied, lied or

lie, lay, lain.

A paradigm for irregular verbs

Arguments: three forms instead of one.

Pattern matching done in regular verbs can be reused.

irregVerb : (_,_,_ : Str) -> Verb = \sing,sang,sung ->

let v = smartVerb sing

in

mkVerb sing (v.s ! VPres) sang sung (v.s ! VPresPart) ;

Putting it all together

We have three functions:

smartVerb : Str -> Verb

irregVerb : Str -> Str -> Str -> Verb

mkVerb : Str -> Str -> Str -> Str -> Str -> Verb

As all types are different, we can use overloading and give them all

the same name.

An overloaded paradigm

For documentation: variable names showing examples of arguments.

mkV = overload {

mkV : (cry : Str) -> Verb = smartVerb ;

mkV : (sing,sang,sung : Str) -> Verb = irregVerb ;

mkV : (go,goes,went,gone,going : Str) -> Verb = mkVerb ;

} ;

Testing the overloaded paradigm

> cc -all mkV "lie"

lie lies lied lied lying

> cc -all mkV "lie" "lay" "lain"

lie lies lay lain lying

> cc -all mkV "omit"

omit omits omitted omitted omitting

> cc -all mkV "vomit"

vomit vomits vomitted vomitted vomitting

> cc -all mkV "vomit" "vomited" "vomited"

vomit vomits vomited vomited vomitting

> cc -all mkV "vomit" "vomits" "vomited" "vomited" "vomiting"

vomit vomits vomited vomited vomiting

Surely we could do better for vomit...

Phases of morphology implementation

1. Linearization type, with parametric and inherent features.

2. Worst-case function.

3. The set of paradigms, traditionally taking one argument each.

4. Smart paradigms, with relevant numbers of arguments.

5. Overloaded user function, collecting the smart paradigms.

Other parts of speech

Usually recommended order:

1. Nouns, the simplest class.

2. Adjectives, often using noun inflection, adding gender and degree.

3. Verbs, usually the most complex class, using adjectives in participles.

Morphophonemic functions

Many operations are common to different parts of speech.

Example: adding an s to an English noun or verb.

add_s : Str -> Str = \v -> case v of {

_ + ("s"|"z"|"x"|"ch") => v + "es" ;

_ + ("a"|"e"|"o"|"u") + "y" => v + "s" ;

cr + "y" => cr + "ies" ;

_ => v + "s"

} ;

This should be defined separately, not directly in verb conjunctions.

Notice: pattern variable cr matches like but gets bound.

Building a lexicon

Boringly, we need abstract and concrete modules even for one lan-

guage.

abstract Lex = { concrete LexEng = open Morpho in {

cat V ; lincat V = Verb ;

fun lin

play_V : V ; play_V = mkV "play" ;

sleep_V : V ; sleep_V = mkV "sleep" "slept" "slept" ;

}

Fortunately, these modules can be mechnically generated from a POS-

tagged word list

V play

V sleep slept slept

Bootstrapping a lexicon

Alt 1. From a morphological POS-tagged word list: trivial

V play played played

V sleep slept slept

Alt 2. From a plain word list, POS-tagged: start assuming regularity,

generate, correct, and add forms by iteration

V play ===> V play played played ===>

V sleep V sleep sleeped sleeped V sleep slept slept

Example: Finnish nouns need 1.42 forms in average (to generate 26

forms).

Nonconcatenative morphology

Semitic languages, e.g. Arabic: kataba has forms kaAtib, yaktubu,
...

Traditional analysis:

• word = root + pattern

• root = three consonants (radicals)

• pattern = function from root to string (notation: string with vari-
ables F,C,L for the radicals)

Example: yaktubu = ktb + yaFCuLu

Words are datastructures rather than strings!

Datastructures for Arabic

Roots are records of strings.

Root : Type = {F,C,L : Str} ;

Patterns are functions from roots to strings.

Pattern : Type = Root -> Str ;

A special case is filling: a record of strings filling the four slots in a

root.

Filling : Type = {F,FC,CL,L : Str} ;

This is enough for everything except middle consonant duplication (e.g.

FaCCaLa).

Applying a pattern

A pattern obtained from a filling intertwines the records:

fill : Filling -> Pattern = \p,r ->

p.F + r.F + p.FC + r.C + p.CL + r.L + p.L ;

Middle consonant duplication also uses a filling but duplicates the C

consonant of the root:

dfill : Filling -> Pattern = \p,r ->

p.F + r.F + p.FC + r.C + r.C + p.CL + r.L + p.L ;

Encoding roots by strings

This is just for the ease of programming and writing lexica.

F = first letter, C = second letter, L = the rest.

getRoot : Str -> Root = \s -> case s of {

F@? + C@? + L => {F = F ; C = C ; L = L} ;

_ => Predef.error ("cannot get root from" ++ s)

} ;

The as-pattern x@p matches p and binds x.

The error function Predef.error stops computation and displays the

string. It is a typical catch-all value.

Encoding patterns by strings

Patterns are coded by using the letters F, C, L.

getPattern : Str -> Pattern = \s -> case s of {

F + "F" + FC + "CC" + CL + "L" + L =>

dfill {F = F ; FC = FC ; CL = CL ; L = L} ;

F + "F" + FC + "C" + CL + "L" + L =>

fill {F = F ; FC = FC ; CL = CL ; L = L} ;

_ => Predef.error ("cannot get pattern from" ++ s)

} ;

A high-level lexicon building function

Dictionary entry: root + pattern.

getWord : Str -> Str -> Str = \r,p ->

getPattern p (getRoot r) ;

Now we can try:

> cc getWord "ktb" "yaFCuLu"

"yaktubu"

> cc getWord "ktb" "muFaCCiLu"

"mukattibu"

Parameters for the Arabic verb type

Inflection in tense, number, person, gender.

param

Number = Sg | Dl | Pl ;

Gender = Masc | Fem ;

Tense = Perf | Impf ;

Person = Per1 | Per2 | Per3 ;

But not in all combinations. For instance: no first person dual.

(We have omitted most tenses and moods.)

Example of Arabic verb inflection

Arabic verb type: implementation

We use an algebraic datatype to include only the meaningful combi-

nations.

param VPer =

Vp3 Number Gender

| Vp2Sg Gender

| Vp2Dl

| Vp2Pl Gender

| Vp1Sg

| Vp1Pl ;

oper Verb : Type = {s : Tense => VPer => Str} ;

Thus 2*(3*2 + 2 + 1 + 2 + 1 + 1) = 26 forms, not 2*3*2*3 = 36.

An Arabic verb paradigm

pattV_u : Tense -> VPer -> Pattern = \t,v -> getPattern (case t of {
Perf => case v of {

Vp3 Sg Masc => "FaCaLa" ;
Vp3 Sg Fem => "FaCaLato" ; -- o is the no-vowel sign ("sukun")
Vp3 Dl Masc => "FaCaLaA" ;
-- ...
} ;

Impf => case v of {
-- ...
Vp1Sg => "A?aFoCuLu" ;
Vp1Pl => "naFoCuLu"
}

}) ;

u_Verb : Str -> Verb = \s -> {
s = \\t,p => appPattern (getRoot s) (pattV_u t p)
} ;

Applying an Arabic paradigm

Testing in the resource module:

> cc -all u_Verb "ktb"

kataba katabato katabaA katabataA katabuwA katabona katabota kataboti katabotumaA

katabotum katabotunv2a katabotu katabonaA yakotubu takotubu yakotubaAni

takotubaAni yakotubuwna yakotubna takotubu takotubiyna takotubaAni takotubuwna

takotubona A?akotubu nakotubu

Building a lexicon:

fun ktb_V : V ;

lin ktb_V = u_Verb "ktb" ;

How we did the printing (recreational GF hacking)

We defined a HTML printing operation

oper verbTable : Verb -> Str

and used it in a special category Table built by

fun Tab : V -> Table ;

lin Tab v = verbTable v ;

We then used

> l Tab ktb_V | ps -env=quotes -to_arabic | ps -to_html | wf -file=ara.html

> ! tr "\"" " " <ara.html >ar.html

Exercises

1. Learn to use the commands compute concrete, morpho analyse, morpho quiz.

2. Try out some smart paradigms in the resource library files Paradigms

for some languages you know (or don’t know yet). Use the command

cc for this.

3. Write a morphology implementation for some word class and some

paradigms in your target language. Start with feature design and finish

with a smart paradigm.

4. Bootstrap a GF lexicon (abstract + concrete) of 100 words in your

target language.

5. (Recreational GF hacking.) Write an operation similar to verbTable

for printing nice inflection tables in HTML.

Lecture 3

Building up a linguistic syntax

Contents

The key categories and rules

Morphology-syntax interface

Examples and variations in English, Italian, French, Finnish, Swedish,

German, Hindi

A miniature resource grammar: Italian

Module extension and dependency graphs

Ergativity in Hindi/Urdu

Don’t worry if the details of this lecture feel difficult! Syntax is difficult

and this is why resource grammars are so useful!

Syntax in the resource grammar

”Linguistic ontology”: syntactic structures common to languages

80 categories, 200 functions, which have worked for all resource lan-

guages so far

Sufficient for most purposes of expressing meaning: mathematics,

technical documents, dialogue systems

Must be extended by language-specific rules to permit parsing of arbi-

trary text (ca. 10% more in English?)

A lot of work, easy to get wrong!

The key categories

cat name example
Cl clause every young man loves Mary
VP verb phrase loves Mary
V2 two-place verb loves
NP noun phrase every young man
CN common noun young man
Det determiner every
AP adjectival phrase young

The key functions

fun name example
PredVP : NP -> VP -> Cl predication every man loves Mary
ComplV2 : V2 -> NP -> VP complementation loves Mary
DetCN : Det -> CN -> NP determination every man
AdjCN : AP -> CN -> CN modification young man

Feature design

cat variable inherent
Cl tense -
VP tense, agr -
V2 tense, agr case
NP case agr
CN number, case gender
Det gender, case number
AP gender, number, case -

agr = agreement features: gender, number, person

Predication: interplay between features

param Tense, Case, Agr

lincat Cl = {s : Tense => Str }

lincat NP = {s : Case => Str ; a : Agr}

lincat VP = {s : Tense => Agr => Str }

fun PredVP : NP -> VP -> Cl

lin PredVP np vp = {s = \\t => np.s ! subj ++ vp.s ! t ! np.a}

oper subj : Case

Feature passing

In general, combination rules just pass features: no case analysis (table

expressions) is performed.

A special notation is hence useful:

\\p,q => t === table {p => table {q => t}}

It is similar to lambda abstraction (\x,y -> t in a function type).

Predication: examples

English

np.agr present past future
Sg Per1 I sleep I slept I will sleep
Sg Per3 she sleeps she slept she will sleep
Pl Per1 we sleep we slept we will sleep

Italian (”I am tired”, ”she is tired”, ”we are tired”)

np.agr present past future
Masc Sg Per1 io sono stanco io ero stanco io sarò stanco
Fem Sg Per3 lei è stanca lei era stanca lei sarà stanca
Fem Pl Per1 noi siamo stanche noi eravamo stanche noi saremo stanche

Predication: variations

Word order:

• will I sleep (English), è stanca lei (Italian)

Pro-drop:

• io sono stanco vs. sono stanco (Italian)

Ergativity:

• agreement to object rather than subject (Hindi)

Variable subject case:

• minä olen lapsi vs. minulla on lapsi (Finnish, ”I am a child” (nom-

inative) vs. ”I have a child” (adessive))

Interplay between features: complementation

lincat NP = {s : Case => Str ; a : Agr }

lincat VP = {s : Tense => Agr => Str }

lincat V2 = {s : Tense => Agr => Str ; c : Case}

fun ComplV2 : V2 -> NP -> VP

lin ComplV2 v2 vp = {s = \\t,a => v2.s ! t ! a ++ np.s ! v2.c}

Complementation: examples

English

v2.case infinitive VP
Acc love me
at + Acc look at me

Finnish

v2.case VP, infinitive translation
Accusative tavata minut ”meet me”
Partitive rakastaa minua ”love me”
Elative pitää minusta ”like me”
Genitive + perään katsoa minun perääni ”look after me”

Complementation: variations

Prepositions: a two-place verb usually involves a preposition in addi-

tion case

lincat V2 = {s : Tense => Agr => Str ; c : Case ; prep : Str}

lin ComplV2 v2 vp = {s = \\t,a => v2.s ! t ! a ++ v2.prep ++ np.s ! v2.c}

Clitics: the place of the subject can vary, as in Italian:

• Maria ama Giovanni vs. Maria mi ama (”Mary loves John” vs.

”Mary loves me”)

Interplay between features: determination

lincat NP = {s : Case => Str ; a : Agr }

lincat CN = {s : Number => Case => Str ; g : Gender}

lincat Det = {s : Gender => Case => Str ; n : Number}

fun DetCN : Det -> CN -> NP

lin DetCN det cn = {

s = \\c => det.s ! cn.g ! c ++ cn.s ! det.n ! c ;

a = agr cn.g det.n Per3

}

oper agr : Gender -> Number -> Person -> Agr

Determination: examples

English

Det.num NP
Sg every house
Pl these houses

Italian (”this wine”, ”this pizza”, ”those pizzas”)

Det.num CN.gen NP
Sg Masc questo vino
Sg Fem questa pizza
Pl Fem quelle pizze

Finnish (”every house”, ”these houses”)

Det.num NP, nominative NP, inessive
Sg jokainen talo jokaisessa talossa
Pl nämä talot näissä taloissa

Determination: variations

Systamatic number variation:

• this-these, the-the, il-i (Italian ”the-the”)

”Zero” determiners:

• talo (”a house”) vs. talo (”the house”) (Finnish)

• a house vs. houses (English), une maison vs. des maisons (French)

Specificity parameter of nouns:

• varje hus vs. det huset (Swedish, ”every house” vs. ”that house”)

Interplay between features: modification

lincat AP = {s : Gender => Number => Case => Str }

lincat CN = {s : Number => Case => Str ; g : Gender}

fun AdjCN : AP -> CN -> CN

lin AdjCN ap cn = {

s = \\n,c => ap.s ! cn.g ! n ! c ++ cn.s ! n ! c ;

g = cn.g

}

Modification: examples

English

CN, singular CN, plural
new house new houses

Italian (”red wine”, ”red house”)

CN.gen CN, singular CN, plural
Masc vino rosso vini rossi
Fem casa rossa case rosse

Finnish (”red house”)

CN, sg, nominative CN, sg, ablative CN, pl, essive
punainen talo punaiselta talolta punaisina taloina

Modification: variations

The place of the adjectival phrase

• Italian: casa rossa, vecchia casa (”red house”, ”old house”)

• English: old house, house similar to this

Specificity parameter of the adjective

• German: ein rotes Haus vs. das rote Haus (”a red house” vs. ”the

red house”)

Lexical insertion

To ”get started” with each category, use words from lexicon.

There are lexical insertion functions for each lexical category:

UseN : N -> CN

UseA : A -> AP

UseV : V -> VP

The linearization rules are often trivial, because the lincats match

lin UseN n = n

lin UseA a = a

lin UseV v = v

However, for UseV in particular, this will usually be more complex.

The head of a phrase

The inserted word is the head of the phrases built from it:

• house is the head of house, big house, big old house etc

As a rule with many exceptions and modifications,

• variable features are passed from the phrase to the head

• inherent features of the head are inherited by the noun

This works for endocentric phrases: the head has the same type as

the full phrase.

What is the head of a noun phrase?

In an NP of form Det CN, is Det or CN the head?

Neither, really, because features are passed in both directions:

lin DetCN det cn = {

s = \\c => det.s ! cn.g ! c ++ cn.s ! det.n ! c ;

a = agr cn.g det.n Per3

}

Moreover, this NP is exocentric: no part is of the same type as the

whole.

Structural words

Structural words = function words, words with special grammat-

ical functions

• determiners: the, this, every

• pronouns: I, she

• conjunctions: and, or, but

Often members of closed classes, which means that new words are

never (or seldom) introduces to them.

Linearization types are often specific and inflection are irregular.

A miniature resource grammar for Italian

We divide it to five modules - much fewer than the full resource!

abstract Grammar -- syntactic cats and funs

abstract Test = Grammar **... -- test lexicon built on Grammar

resource ResIta -- resource for Italian

concrete GrammarIta of Grammar = open ResIta in... -- Italian syntax

concrete TestIta of Test = GrammarIta ** open ResIta in... -- It. lexicon

Extension vs. opening

Module extension: N = M1, M2, M3 ** {...}

• module N inherits all judgements from M1,M2,M3

Module opening: N = open R1, R2, R3 in {...}

• module N can use all judgements from R1,R2,R3 (but doesn’t inherit

them)

Module dependencies

rectangle = abstract, solid ellipse = concrete, dashed ellipse = resource

Producing the dependency graph

Using the command dg = dependency graph and graphviz

> i -retain TestIta.gf

> dependency_graph

wrote graph in file _gfdepgraph.dot

> ! dot -Tjpg _gfdepgraph.dot >testdep.jpg

Before calling dot, removed the module Predef to save space.

The module Grammar

abstract Grammar = {
cat

Cl ; NP ; VP ; AP ; CN ; Det ; N ; A ; V ; V2 ;
fun

PredVP : NP -> VP -> Cl ;
ComplV2 : V2 -> NP -> VP ;
DetCN : Det -> CN -> NP ;
ModCN : CN -> AP -> CN ;

UseV : V -> VP ;
UseN : N -> CN ;
UseA : A -> AP ;

a_Det, the_Det : Det ; this_Det, these_Det : Det ;
i_NP, she_NP, we_NP : NP ;

}

Parameters

Parameters are defined in ResIta.gf. Just 11 of the 56 verb forms.

Number = Sg | Pl ;

Gender = Masc | Fem ;

Case = Nom | Acc | Dat ;

Aux = Avere | Essere ; -- the auxiliary verb of a verb

Tense = Pres | Perf ;

Person = Per1 | Per2 | Per3 ;

Agr = Ag Gender Number Person ;

VForm = VInf | VPres Number Person | VPart Gender Number ;

Tense and agreement of a verb phrase, in syntax

UseV arrive V Pres Perf
Ag Masc Sg Per1 arrivo sono arrivato
Ag Fem Sg Per1 arrivo sono arrivata
Ag Masc Sg Per2 arrivi sei arrivato
Ag Fem Sg Per2 arrivi sei arrivata
Ag Masc Sg Per3 arriva è arrivato
Ag Fem Sg Per3 arriva è arrivata
Ag Masc Pl Per1 arriviamo siamo arrivati
Ag Fem Pl Per1 arriviamo siamo arrivate
Ag Masc Pl Per2 arrivate siete arrivati
Ag Fem Pl Per2 arrivate siete arrivate
Ag Masc Pl Per3 arrivano sono arrivati
Ag Fem Pl Per3 arrivano sono arrivate

The forms of a verb, in morphology

arrive V form
VInf arrivare
VPres Sg Per1 arrivo
VPres Sg Per2 arrivi
VPres Sg Per3 arriva
VPres Pl Per1 arriviamo
VPres Pl Per2 arrivate
VPres Pl Per3 arrivano
VPart Masc Sg arrivato
VPart Fem Sg arrivata
VPart Masc Pl arrivati
VPart Fem Pl arrivate

Inherent feature: aux is essere.

The verb phrase type

Lexical insertion maps V to VP.

Two possibilities for VP: either close to Cl,

lincat VP = {s : Tense => Agr => Str}

or close to V, just adding a clitic and an object to verb,

lincat VP = {v : Verb ; clit : Str ; obj : Str} ;

We choose the latter. It is more efficient in parsing.

Verb phrase forming

Lexical insertion is trivial.

lin UseV v = {v = v ; clit, obj = []}

Complementation assumes NP has a clitic and an ordinary object part.

lin ComplV2 =

let

nps = np.s ! v2.c

in {

v = {s = v2.s ; aux = v2.aux} ;

clit = nps.clit ;

obj = nps.obj

}

Noun phrases

Being clitic depends on case

lincat NP = {s : Case => {clit,obj : Str} ; a : Agr} ;

Examples:

lin she_NP = {
s = table {

Nom => {clit = [] ; obj = "lei"} ;
Acc => {clit = "la" ; obj = []} ;
Dat => {clit = "le" ; obj = []}
} ;

a = Ag Fem Sg Per3
}

lin John_NP = {
s = table {

Nom | Acc => {clit = [] ; obj = "Giovanni"} ;
Dat => {clit = [] ; obj = "a Giovanni"}
} ;

a = Ag Fem Sg Per3
}

Noun phrases: alternatively

Use a feature instead of separate fields,

lincat NP = {s : Case => {s : Str ; isClit : Bool} ; a : Agr} ;

Our use of separate fields is more efficient and scales up better to

multiple clitic positions.

Determination

No surprises

lincat Det = {s : Gender => Case => Str ; n : Number} ;

lin DetCN det cn = {

s = \\c => {obj = det.s ! cn.g ! c ++ cn.s ! det.n ; clit = []} ;

a = Ag cn.g det.n Per3

} ;

Building determiners

Often from adjectives:

lin this_Det = adjDet (mkA "questo") Sg ;

lin these_Det = adjDet (mkA "questo") Pl ;

oper prepCase : Case -> Str = \c -> case c of {

Dat => "a" ;

_ => []

} ;

oper adjDet : Adj -> Number -> Determiner = \adj,n -> {

s = \\g,c => prepCase c ++ adj.s ! g ! n ;

n = n

} ;

Articles: see GrammarIta.gf

Adjectival modification

Recall the inherent feature for position

lincat AP = {s : Gender => Number => Str ; isPre : Bool} ;

lin ModCN cn ap = {

s = \\n => preOrPost ap.isPre (ap.s ! cn.g ! n) (cn.s ! n) ;

g = cn.g

} ;

Obviously, separate pre- and post- parts could be used instead.

Italian morphology

Complex but mostly great fun:

regNoun : Str -> Noun = \vino -> case vino of {

fuo + c@("c"|"g") + "o" => mkNoun vino (fuo + c + "hi") Masc ;

ol + "io" => mkNoun vino (ol + "i") Masc ;

vin + "o" => mkNoun vino (vin + "i") Masc ;

cas + "a" => mkNoun vino (cas + "e") Fem ;

pan + "e" => mkNoun vino (pan + "i") Masc ;

_ => mkNoun vino vino Masc

} ;

See ResIta for more details.

Predication, at last

Place the object and the clitic, and select the verb form.

lin PredVP np vp =

let

subj = (np.s ! Nom).obj ;

obj = vp.obj ;

clit = vp.clit ;

verb = table {

Pres => agrV vp.v np.a ;

Perf => agrV (auxVerb vp.v.aux) np.a ++ agrPart vp.v np.a

}

in {

s = \\t => subj ++ clit ++ verb ! t ++ obj

} ;

Selection of verb form

We need it for the present tense

oper agrV : Verb -> Agr -> Str = \v,a -> case a of {

Ag _ n p => v.s ! VPres n p

} ;

The participle agrees to the subject, if the auxiliary is essere

oper agrPart : Verb -> Agr -> Str = \v,a -> case v.aux of {

Avere => v.s ! VPart Masc Sg ;

Essere => case a of {

Ag g n _ => v.s ! VPart g n

}

} ;

To do

Full details of the core resource grammar are in ResIta (150 loc) and

GrammarIta (80 loc).

One thing is not yet done correctly: agreement of participle to ac-

cusative clitic object: now it gives io la ho amato, and not io la ho

amata.

This is left as an exercise!

Ergativity in Hindi/Urdu

Normally, the subject is nominative and the verb agrees to the subject.

However, in the perfective tense:

• the subject of a transitive verb is in an ergative ”case” (particle
ne)

• the verb agrees to the object

Example: ”the boy/girl eats the apple/bread”

subj obj gen. present perfective
Masc Masc ladka: seb Ka:ta: hai ladke ne seb Ka:ya:
Masc Fem ladka: roTi: Ka:ta: hai ladke ne roTi: Ka:yi:
Fem Masc ladki: seb Ka:ti: hai ladki: ne seb Ka:ya:
Fem Fem ladki: roTi: Ka:ti: hai ladki: ne roTi: Ka:yi:

A Hindi clause in different tenses

Exercises

1. Learn the commands dependency graph, print grammar, system es-
cape !, and system pipe ?.

2. Write tables of examples of the key syntactic functions for your
target languages, trying to include all possible forms.

3. Implement Grammar and Test for your target language.

4. Even if you don’t know Italian, you may try this: add a parameter
or something in GrammarIta to implement the rule that the participle
in the perfect tense agrees in gender and number with an accusative
clitic. Test this with the sentences lei la ha amata and lei ci ha amati
(where the current grammar now gives amato in both cases).

5. Learn some linguistics! My favourite book is Introduction to The-
oretical Linguistics by John Lyons (Cambridge 1968, at least 14 edi-
tions).

Lecture 4

Using the Resource Grammar

Library in applications

Contents

Software libraries: programmer’s vs. users view

Semantic vs. syntactic grammars

Example of semantic grammar and its implementation

Interfaces and parametrized modules

Free variation

Overview of the Resource Grammar API

Software libraries

Collections of reusable functions/types/classes

API = Application Programmer’s Interface

• show enough to enable use

• hide details

Example: maps (lookup tables, hash maps) in Haskell, C++, Java, ...

type Map

lookup : key -> Map -> val

update : key -> val -> Map -> Map

Hidden: the definition of the type Map and of the functions lookup and
update.

Advantages of software libraries

Programmers have

• less code to write (e.g. how to look up)

• less techniques to learn (e.g. efficient Map datastructures)

Improvements and bug fixes can be inherited

Grammars as software libraries

Smart paradigms as API for morphology

mkN : (talo : Str) -> N

Abstract syntax as API for syntactic combinations

PredVP : NP -> VP -> Cl

ComplV2 : V2 -> NP -> VP

NumCN : Num -> CN -> NP

Using the library: natural language output

Task: in an email program, generate phrases saying you have n mes-

sage(s)

Problem: avoid you have one messages

Solution: use the library

PredVP youSg_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "message"))))

===> you have two messages

PredVP youSg_NP (ComplV2 have_V2 (NumCN one_Num (UseN (mkN "message"))))

===> you have one message

Software localization

Adapt the email program to Italian, Swedish, Finnish...

PredVP youSg_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "messaggio"))))

===> hai due messaggi

PredVP youSg_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "meddelande"))))

===> du har två meddelanden

PredVP youSg_NP (ComplV2 have_V2 (NumCN two_Num (UseN (mkN "viesti"))))

===> sinulla on kaksi viestiä

The new languages are more complex than English - but only internally,

not on the API level!

Correct number in Arabic

(From ”Implementation of the Arabic Numerals and their Syntax in GF” by Ali Dada, ACL workshop

on Arabic, Prague 2007)

Use cases for grammar libraries

Grammars need very much very special knowledge, and a lot of work

- thus an excellent topic for a software library!

Some applications where grammars have shown to be useful:

• software localization

• natural language generation (from formalized content)

• technical translation

• spoken dialogue systems

Two kinds of grammarians

Application grammarians vs. resource grammarians

grammarian applications resources
expertise application domain linguistics
programming skills programming in general GF programming
language skills practical use theoretical knowledge

We want a division of labour.

Two kinds of grammars

Application grammars vs. resource grammars

grammar application resource
abstract syntax semantic syntactic
concrete syntax using resource API parameters, tables, records
lexicon idiomatic, technical just for testing
size small or bigger big

A.k.a. semantic grammars vs. syntactic grammars.

Meaning-preserving translation

Translation must preserve meaning.

It need not preserve syntactic structure.

Sometimes it is even impossible:

• John likes Mary in Italian is Maria piace a Giovanni

The abstract syntax in the semantic grammar is a logical predicate:

fun Like : Person -> Person -> Fact

lin Like x y = x ++ "likes" ++ y -- English

lin Like x y = y ++ "piace" ++ "a" ++ x -- Italian

Translation and resource grammar

To get all grammatical details right, we use resource grammar and

not strings

lincat Person = NP ; Fact = Cl ;

lin Like x y = PredVP x (ComplV2 like_V2 y) -- Engligh

lin Like x y = PredVP y (ComplV2 piacere_V2 x) -- Italian

From syntactic point of view, we perform transfer, i.e. structure

change.

GF has compile-time transfer, and uses interlingua (semantic abstrac

syntax) at run time.

Domain semantics

”Semantics of English”, or of any other natural language as a whole,

has never been built.

It is more feasible to have semantics of fragments - of small, well-

understood parts of natural language.

Such languages are called domain languages, and their semantics,

domain semantics.

Domain semantics = ontology in the Semantic Web terminology.

Examples of domain semantics

Expressed in various formal languages

• mathematics, in predicate logic

• software functionality, in UML/OCL

• dialogue system actions, in SISR

• museum object descriptions, in OWL

GF abstract syntax can be used for any of these!

Example: abstract syntax for a ”Face” community

What messages can be expressed on the community page?

abstract Face = {

flags startcat = Message ;

cat

Message ; Person ; Object ; Number ;

fun

Have : Person -> Number -> Object -> Message ; -- p has n o’s

Like : Person -> Object -> Message ; -- p likes o

You : Person ;

Friend, Invitation : Object ;

One, Two, Hundred : Number ;

}

Notice the startcat flag, as the start category isn’t S.

Presenting the resource grammar

In practice, the abstract syntax of Resource Grammar is inconvenient

• too deep structures, too much code to write

• too many names to remember

We do the same as in morphology: overloaded operations, named mkC
where C is the value category.

The resource defines e.g.

mkCl : NP -> V2 -> NP -> Cl = \subj,verb,obj ->

PredVP subj (ComplV2 verb obj)

mkCl : NP -> V -> Cl = \subj,verb ->

PredVP subj (UseV verb)

Relevant part of Resource Grammar API for ”Face”

These functions (some of which are structural words) are used.

Function example
mkCl : NP -> V2 -> NP -> Cl John loves Mary
mkNP : Numeral -> CN -> NP five cars
mkNP : Quant -> CN -> NP that car
mkNP : Pron -> NP we
mkCN : N -> CN car
this Quant : Quant this, these
youSg Pron : Pron you (singular)
n1 Numeral, n2 Numeral : Numeral one, two
n100 Numeral : Numeral one hundred
have V2 : V2 have

Concrete syntax for English

How are messages expressed by using the library?

concrete FaceEng of Face = open SyntaxEng, ParadigmsEng in {
lincat

Message = Cl ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkCl p have_V2 (mkNP n o) ;
Like p o = mkCl p like_V2 (mkNP this_Quant o) ;
You = mkNP youSg_Pron ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;
One = n1_Numeral ;
Two = n2_Numeral ;
Hundred = n100_Numeral ;

oper
like_V2 = mkV2 "like" ;
invitation_N = mkN "invitation" ;
friend_N = mkN "friend" ;

}

Concrete syntax for Finnish

Exactly the same rules of combination, only different words:

concrete FaceFin of Face = open SyntaxFin, ParadigmsFin in {
lincat

Message = Cl ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkCl p have_V2 (mkNP n o) ;
Like p o = mkCl p like_V2 (mkNP this_Quant o) ;
You = mkNP youSg_Pron ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;
One = n1_Numeral ;
Two = n2_Numeral ;
Hundred = n100_Numeral ;

oper
like_V2 = mkV2 "pitää" elative ;
invitation_N = mkN "kutsu" ;
friend_N = mkN "ystävä" ;

}

Parametrized modules

Can we avoid repetition of the lincat and lin code? Yes!

New module type: functor, a.k.a. incomplete or parametrized mod-

ule

incomplete concrete FaceI of Face = open Syntax, LexFace in ...

A functor may open interfaces.

An interface has oper declarations with just a type, no definition.

Here, Syntax and LexFace are interfaces.

The domain lexicon interface

Syntax is the Resource Grammar interface, and gives

• combination rules

• structural words

Content words are not given in Syntax, but in a domain lexicon

interface LexFace = open Syntax in {

oper

like_V2 : V2 ;

invitation_N : N ;

friend_N : N ;

}

Concrete syntax functor ”FaceI”

incomplete concrete FaceI of Face = open Syntax, LexFace in {

lincat
Message = Cl ;
Person = NP ;
Object = CN ;
Number = Numeral ;

lin
Have p n o = mkCl p have_V2 (mkNP n o) ;
Like p o = mkCl p like_V2 (mkNP this_Quant o) ;
You = mkNP youSg_Pron ;
Friend = mkCN friend_N ;
Invitation = mkCN invitation_N ;
One = n1_Numeral ;
Two = n2_Numeral ;
Hundred = n100_Numeral ;

}

An English instance of the domain lexicon

Define the domain words in English

instance LexFaceEng of LexFace = open SyntaxEng, ParadigmsEng in {

oper

like_V2 = mkV2 "like" ;

invitation_N = mkN "invitation" ;

friend_N = mkN "friend" ;

}

Put everything together: functor instantiation

Instantiate the functor FaceI by giving instances to its interfaces

--# -path=.:present

concrete FaceEng of Face = FaceI with

(Syntax = SyntaxEng),

(LexFace = LexFaceEng) ;

Also notice the domain search path.

Porting the grammar to Finnish

1. Domain lexicon: use Finnish paradigms and words

instance LexFaceFin of LexFace = open SyntaxFin, ParadigmsFin in {

oper

like_V2 = mkV2 (mkV "pitää") elative ;

invitation_N = mkN "kutsu" ;

friend_N = mkN "ystävä" ;

}

2. Functor instantiation: mechanically change Eng to Fin

--# -path=.:present

concrete FaceFin of Face = FaceI with

(Syntax = SyntaxFin),

(LexFace = LexFaceFin) ;

Modules of a domain grammar: ”Face” community

1. Abstract syntax, Face

2. Parametrized concrete syntax: FaceI

3. Domain lexicon interface: LexFace

4. For each language L: domain lexicon instance LexFaceL

5. For each language L: concrete syntax instantiation FaceL

Module dependency graph

red = to do, orange = to do (trivial), blue = to do (once), green = library

Porting the grammar to Italian

1. Domain lexicon: use Italian paradigms and words

instance LexFaceIta of LexFace = open SyntaxIta, ParadigmsIta in {

oper

like_V2 = mkV2 (mkV (piacere_64 "piacere")) dative ;

invitation_N = mkN "invito" ;

friend_N = mkN "amico" ;

}

2. Functor instantiation: restricted inheritance, excluding Like

concrete FaceIta of Face = FaceI - [Like] with

(Syntax = SyntaxIta),

(LexFace = LexFaceIta) ** open SyntaxIta in {

lin Like p o =

mkCl (mkNP this_Quant o) like_V2 p ;

}

Free variation

There can be many ways of expressing a given semantic structure.

This can be expressed by the variant operator |.

fun BuyTicket : City -> City -> Request

lin BuyTicket x y =

(("I want" ++ ((("to buy" | []) ++ ("a ticket")) | "to go"))

|

(("can you" | []) ++ "give me" ++ "a ticket")

|

[]) ++

"from" ++ x ++ "to" ++y

The variants can of course be resource grammar expressions as well.

Overview of the resource grammar API

For the full story, see the resource grammar synopsis in

digitalgrammars.com/gf/lib/resource/doc/synopsis.html

Main division:

• Syntax, common to all languages

• ParadigmsL, specific to language L

The Synopsis for next-lib has some more functions.

http://digitalgrammars.com/gf/lib/resource/doc/synopsis.html

Main categories and their dependencies

Categories of complex phrases

Category Explanation Example
Text sequence of utterances Does John walk? Yes.
Utt utterance does John walk
Imp imperative don’t walk
S sencence (fixed tense) John wouldn’t walk
QS question sentence who hasn’t walked
Cl clause (variable tense) John walks
QCl question clause who doesn’t walk
VP verb phrase love her
AP adjectival phrase very young
CN common noun phrase young man
Adv adverbial phrase in the house

Lexical categories for building predicates

Cat Explanation Compl Example
A one-place adjective - smart
A2 two-place adjective NP married (to her)
Adv adverb - here
N common noun - man
N2 relational noun NP friend (of John)
NP noun phrase - the boss
V one-place verb - sleep
V2 two-place verb NP love (her)
V3 three-place verb NP, NP show (it to me)
VS sentence-complement verb S say (that I run)
VV verb-complement verb VP want (to run)

Functions for building predication clauses

Fun Type Example
mkCl NP -> V -> Cl John walks
mkCl NP -> V2 -> NP -> Cl John loves her
mkCl NP -> V3 -> NP -> NP -> Cl John sends it to her
mkCl NP -> VV -> VP -> Cl John wants to walk
mkCl NP -> VS -> S -> Cl John says that it is good
mkCl NP -> A -> Cl John is old
mkCl NP -> A -> NP -> Cl John is older than Mary
mkCl NP -> A2 -> NP -> Cl John is married to her
mkCl NP -> AP -> Cl John is very old
mkCl NP -> N -> Cl John is a man
mkCl NP -> CN -> Cl John is an old man
mkCl NP -> NP -> Cl John is the man
mkCl NP -> Adv -> Cl John is here

Noun phrases and common nouns

Fun Type Example
mkNP Quant -> CN -> NP this man
mkNP Numeral -> CN -> NP five men
mkNP PN -> NP John
mkNP Pron -> NP we
mkNP Quant -> Num -> CN -> NP these (five) man
mkCN N -> CN man
mkCN A -> N -> CN old man
mkCN AP -> CN -> CN very old Chinese man
mkNum Numeral -> Num five
n100 Numeral Numeral one hundred
plNum Num (plural)

Questions and interrogatives

Fun Type Example
mkQCl Cl -> QCl does John walk
mkQCl IP -> V -> QCl who walks
mkQCl IP -> V2 -> NP -> QCl who loves her
mkQCl IP -> NP -> V2 -> QCl whom does she love
mkQCl IP -> AP -> QCl who is old
mkQCl IP -> NP -> QCl who is the boss
mkQCl IP -> Adv -> QCl who is here
mkQCl IAdv -> Cl -> QCl where does John walk
mkIP CN -> IP which car
who IP IP who
why IAdv IAdv why
where IAdv IAdv where

Sentence formation, tense, and polarity

Fun Type Example
mkS Cl -> S he walks
mkS (Tense)->(Ant)->(Pol)->Cl -> S he wouldn’t have walked
mkQS QCl -> QS does he walk
mkQS (Tense)->(Ant)->(Pol)->QCl -> QS wouldn’t he have walked

Function Type Example
conditionalTense Tense (he would walk)
futureTense Tense (he will walk)
pastTense Tense (he walked)
presentTense Tense (he walks) [default]
anteriorAnt Ant (he has walked)
negativePol Pol (he doesn’t walk)

Utterances and imperatives

Fun Type Example
mkUtt Cl -> Utt he walks
mkUtt S -> Utt he didn’t walk
mkUtt QS -> Utt who didn’t walk
mkUtt Imp -> Utt walk
mkImp V -> Imp walk
mkImp V2 -> NP -> Imp find it
mkImp AP -> Imp be brave

More

Texts: Who walks? John. Where? Here!

Relative clauses: man who owns a donkey

Adverbs: in the house

Subjunction: if a man owns a donkey

Coordination: John and Mary are English or American

Exercises

1. Compile and make available the resource grammar library, latest

version. Compilation is by make in GF/next-lib/src. Make it available

by setting GF LIB PATH to GF/next-lib.

2. Compile and test the grammars face/FaceL (available in course

source files).

3. Write a concrete syntax of Face for some other resource language

by adding a domain lexicon and a functor instantiation.

4. Add functions to Face and write their concrete syntax for at least

some language.

5. Design your own domain grammar and implement it for some lan-

guages.

Lecture 5

Inside the

Resource Grammar Library

Contents

Module structure

Statistics

How to start building a new language

How to test a resource grammar

The Assignment

The principal module structure

solid = API, dashed = internal, ellipse = abstract+concrete, rectangle = resource/instance,

diamond = interface, green = given, blue = mechanical, red = to do

Division of labour

Written by the resource grammarian:

• concrete of the row from Structural to Verb

• concrete of Cat and Lexicon

• Paradigms

• abstract and concrete of Extra, Irreg

Already given or derived mechanically:

• all abstract modules except Extra, Irreg

• concrete of Common, Grammar, Lang, All

• Constructors, Syntax, Try

Roles of modules: Library API

Syntax: syntactic combinations and structural words

Paradigms: morphological paradigms

Try: (almost) everything put together

Constructors: syntactic combinations only

Irreg: irregularly inflected words (mostly verbs)

Roles of modules: Top-level grammar

Lang: common syntax and lexicon

All: common grammar plus language-dependent extensions

Grammar: common syntax

Structural: lexicon of structural words

Lexicon: test lexicon of 300 content words

Cat: the common type system

Common: concrete syntax mostly common to languages

Roles of modules: phrase categories

module scope value categories
Adjective adjectives AP

Adverb adverbial phrases AdN, Adv

Conjunction coordination Adv, AP, NP, RS, S

Idiom idiomatic expressions Cl, QCl, VP, Utt

Noun noun phrases and nouns Card, CN, Det, NP, Num, Ord

Numeral cardinals and ordinals Digit, Numeral

Phrase suprasentential phrases PConj, Phr, Utt, Voc

Question questions and interrogatives IAdv, IComp, IDet, IP, QCl

Relative relat. clauses and pronouns RCl, RP

Sentence clauses and sentences Cl, Imp, QS, RS, S, SC, SSlash

Text many-phrase texts Text

Verb verb phrases Comp, VP, VPSlash

Type discipline and consistency

Producers: each phrase category module is the producer of value

categories listed on previous slide.

Consumers: all modules may use any categories as argument types.

Contract: the module Cat defines the type system common for both

consumers and producers.

Different grammarians may safely work on different producers.

This works even for mutual dependencies of categories:

Sentence.UseCl : Temp -> Pol -> Cl -> S -- S uses Cl

Sentence.PredVP : VP -> NP -> Cl -- uses VP

Verb.ComplVS : VS -> S -> VP -- uses S

Auxiliary modules

resource modules provided by the library:

• Prelude and Predef: string operations, booleans

• Coordination: generic formation of list conjunctions

• ParamX: commonly used parameter, such as Number = Sg | Pl

resource modules up to the grammarian to write:

• Res: language specific parameter types, morphology, VP formation

• Morpho, Phono,...: possible division of Res to more modules

Dependencies

Most phrase category modules:

concrete VerbGer of Verb = CatGer ** open ResGer, Prelude in ...

Conjunction:

concrete ConjunctionGer of Conjunction = CatGer **

open Coordination, ResGer, Prelude in ...

Lexicon:

concrete LexiconGer of Lexicon = CatGer **

open ParadigmsGer, IrregGer in {

Functional programming style

The Golden Rule: Whenever you find yourself programming by copy

and paste, write a function instead!

• Repetition inside one definition: use a let expression

• Repetition inside one module: define an oper in the same module

• Repetition in many modules: define an oper in the Res module

• Repetition of an entire module: write a functor

Functors in the Resource Grammar Library

Used in families of languages

• Romance: Catalan, French, Italian, Spanish

• Scandinavian: Danish, Norwegian, Swedish

Structure:

• Common, a common resource for the family

• Diff, a minimal interface extended by interface Res

• Cat and phrase structure modules are functors over Res

• Idiom, Structural, Lexicon, Paradigms are ordinary modules

Example: DiffRomance

Words and morphology are of course different, in ways we haven’t

tried to formalize.

In syntax, there are just eight parameters that fundamentally make the

difference:

Prepositions that fuse with the article (Fre, Spa de, a; Ita also con, da, in, su).

param Prepos ;

Which types of verbs exist, in terms of auxiliaries. (Fre, Ita avoir, être, and refl; Spa
only haber and refl).

param VType ;

Derivatively, if/when the participle agrees to the subject. (Fre elle est partie, Ita lei
è partita, Spa not)

oper partAgr : VType -> VPAgr ;

Whether participle agrees to foregoing clitic. (Fre je l’ai vue, Spa yo la he visto)

oper vpAgrClit : Agr -> VPAgr ;

Whether a preposition is repeated in conjunction (Fre la somme de 3 et de 4, Ita la
somma di 3 e 4).

oper conjunctCase : NPForm -> NPForm ;

How infinitives and clitics are placed relative to each other (Fre la voir, Ita vederla).
The Bool is used for indicating if there are any clitics.

oper clitInf : Bool -> Str -> Str -> Str ;

To render pronominal arguments as clitics and/or ordinary complements. Returns
True if there are any clitics.

oper pronArg : Number -> Person -> CAgr -> CAgr -> Str * Str * Bool ;

To render imperatives (with their clitics etc).

oper mkImperative : Bool -> Person -> VPC -> {s : Polarity => AAgr => Str} ;

Pros and cons of functors

+ intellectual satisfaction: linguistic generalizations

+ code can be shared: of syntax code, 75% in Romance and 85% in

Scandinavian

+ bug fixes and maintenance can often be shared as well

+ adding a new language of the same family can be very easy

- difficult to get started with proper abstractions

- new languages may require extensions of interfaces

Workflow: don’t start with a functor, but do one language normally,

and refactor it to an interface, functor, and instance.

Suggestions about functors for new languages

Romance: Portuguese probably using functor, Romanian probably in-

dependent

Germanic: Dutch maybe by functor from German, Icelandic probably

independent

Slavic: Bulgarian and Russian are not functors, maybe one for Western

Slavic (Czech, Slovak, Polish) and Southern Slavic (Bulgarian)

Fenno-Ugric: Estonian maybe by functor from Finnish

Indo-Aryan: Hindi and Urdu most certainly via a functor

Semitic: Arabic, Hebrew, Maltese probably independent

Effort statistics, completed languages

language syntax morpho lex total months started
common 413 - - 413 2 2001
abstract 729 - 468 1197 24 2001
Bulgarian 1200 2329 502 4031 3 2008
English 1025 772 506 2303 6 2001
Finnish 1471 1490 703 3664 6 2003
German 1337 604 492 2433 6 2002
Russian 1492 3668 534 5694 18 2002
Romance 1346 - - 1346 10 2003
Catalan 521 *9000 518 *10039 4 2006
French 468 1789 514 2771 6 2002
Italian 423 *7423 500 *8346 3 2003
Spanish 417 *6549 516 *7482 3 2004
Scandinavian 1293 - - 1293 4 2005
Danish 262 683 486 1431 2 2005
Norwegian 281 676 488 1445 2 2005
Swedish 280 717 491 1488 4 2001
total 12545 *36700 6718 *55963 103 2001

Lines of source code in v. 1.4, rough estimates of person months. * = generated
code.

Languages under construction

language started % morpho % lexicon % syntax
Arabic 2005 90 95 20
Hindi 2008 70 3 5
Latin 2008 80 2 5
Polish 2007 95 60 2
Romanian 2009 95 60 1
Thai 2007 70 2 2
Turkish 2007 30 10 5

Most of these figures are rough estimates!

How to start building a language, e.g. Marathi

1. Create a directory GF/next-lib/src/marathi

2. Check out the ISO 639-3 language code: Mar

3. Copy over the files from the closest related language, e.g. hindi

4. Rename files marathi/*Hin.gf to marathi/*Mar.gf

5. Change imports of Hin modules to imports of Mar modules

6. Comment out every line between header { and the final }

7. Now you can import your (empty) grammar: i marathi/LangMar.gf

Suggested order for proceeding with a language

1. ResMar: parameter types needed for nouns

2. CatMar: lincat N

3. ParadigmsMar: some regular noun paradigms

4. LexiconMar: some words that the new paradigms cover

5. (1.-4.) for V, maybe with just present tense

6. ResMar: parameter types needed for Cl, CN, Det, NP, Quant, VP

7. CatMar: lincat Cl, CN, Det, NP, Quant, VP

8. NounMar: lin DetCN, DetQuant

9. VerbMar: lin UseV

10. SentenceMar: lin PredVP

Character encoding for non-ASCII languages

GF internally: 16-bit unicode

Generated files (.gfo, .pgf): UTF-8

Source files: whatever you want, but use a flag if not isolatin-1.

UTF-8 and cp1251 (Cyrillic) are possible in strings, but not in identi-

fiers. The module must contain

flags coding = utf8 ; -- OR coding = cp1251

Transliterations are available for many alphabets (see help unicode table).

Using transliteration

This is what you have to add in GF/src/GF/Text/Transliterations.hs

transHebrew :: Transliteration

transHebrew = mkTransliteration allTrans allCodes where

allTrans = words $

"A b g d h w z H T y K k l M m N " ++

"n S O P p Z. Z q r s t - - - - - " ++

"w2 w3 y2 g1 g2"

allCodes = [0x05d0..0x05f4]

Also edit a couple of places in GF/src/GF/Command/Commands.hs.

You can later convert the file to UTF-8 with the put string command.

Diagnosis methods along the way

Make sure you have a compilable LangMar at all times!

Use the GF command pg -missing to check which functions are miss-

ing.

Use the GF command gr -cat=C | l -table to test category C

Regression testing with a treebank

Build and maintain a treebank: a set of trees with their linearizations:

1. Create a file test.trees with just trees, one by line.

2. Linearize each tree to all forms, possibly with English for comparison.

> i english/LangEng.gf
> i marathi/LangMar.gf
> rf -lines -tree -file=trs | l -all -treebank | wf test.treebank

3. Create a gold standard gold.treebank from test.treebank by manually correcting
the Marathi linearizations.

4. Compare with the Unix command diff test.treebank gold.treebank

5. Rerun (2.) and (4.) after every change in concrete syntax; extend the tree set
and the gold standard after every new implemented function.

Sources

A good grammar book

• lots of inflection paradigms

• reasonable chapter on syntax

• traditional terminology for grammatical concepts

A good dictionary

• inflection information about words

• verb subcategorization (i.e. case and preposition of complements)

Wikipedia article on the language

Google as ”gold standard”: is it rucola or ruccola?

Google translation for suggestions (can’t be trusted, though!)

Compiling the library

The current development library sources are in GF/next-lib/src.

Use make in this directory to compile the libraries.

Use runghc Make lang api langs=Mar to compile just the language Mar.

Assignment

1. Build a directory and a set of files for your target language.

2. Implement some categories, morphological paradigms, and syntax

rules.

3. Give the lin rules of at least 100 entries in Lexicon.

4. Send us: your source files and a treebank of 100 trees with lineariza-

tions in English and your target language. These linearizations should

be correct, and directly generated from your grammar implementation.

