Grammatical Framework and Chinese

Appendix to the Chinese edition of the book “Grammatical Framework.
Programming with Multilingual Grammars” (by Aarne Ranta, CSLI,
Stanford, 2011)

by Aarne Ranta

Preface

One of the most pleasant surprises in my life was in December 2011, when I received a mail from
Professor Yan Tian F# of Shanghai Jiao Tong University, proposing to translate the GF book to
Chinese. Wow, I thought, this would almost double the potential audience of my book! Less than a year
later, I got the opportunity to visit Professor Tian and her colleagues in Shanghai. She then showed me a
complete manuscript of the translation, of which I unfortunately understood next to nothing. But we had
long sessions discussing the translation of the terminology, which convinced me that the Chinese version
was being produced with great care. We also had a tutorial course and technical discussions, testing
and assessing the newly released Chinese resource grammar, and looking at future project

opportunities. Professor Tian suggested that, in order to make the book genuinely interesting to the
Chinese audience, we should add an Appendix that shows what GF means for Chinese. This is what the
present document attempts to be. It gives Chinese examples and code as a commentary to the main
book, thus following its order of presentation. It is probably hard to read without access to the book,

which I apologize.

I am grateful to Professors Yan Tian and Yinglin Wang EZ&#k, as well as Peng Li 28, for their
hospitality in Shanghai, to Professor Jyrki Nummenmaa from Tampere for creating the contacts leading
to this collaboration and for joining the activities in Shanghai, to Dr Chen Peng %# from Beijing for also
joining the discussions in Shanghai and contributing to the Chinese resource grammar, and to Dr Qiao
Haiyan 5¥## from Guangzhou, who wrote the first Chinese GF code - the Numerals module, which is
now used in the resource grammar - back in 1999. The most demanding part of the work with the
Chinese resource grammar was made by Zhuo Linqiqige S#HE H % as a part of a Masters course at

the University of Gothenburg.

Gothenburg, November 2012

Aarne Ranta FI/RRA 2

To Chapter 1.

To Section 1.3. An example of long-distance dependencies in Chinese is the use of classifiers
attached to counting words and determiners. If you are for instance counting people, the classifier is
(ge), whereas for cats, it is 2 (zhi). Thus five men is AP B A (“five ge man”) whereas five cats is

F RJH (“five zhi cat”); there is no plural inflection of nouns in Chinese. The long-distance
dependencies follow from the fact that adjectival attributes are placed between the classifier and the

noun. In the following series of noun phrases,

five cats L RIH
five black cats L R BIH
five very small black cats L RIFFE /N BIE

the distance between the classifier and the noun increases, and it becomes increasingly difficult for a
statistical model to select the correct classifier.

To Section 1.4. TODO benchmark for Chinese parsing performance. Preliminary experiments suggest
that Chinese is about twice as fast to parse as English, which makes it the fastest language in the
Resource Grammar Library.

To Section 1.5. Figure 5, p. 15, shows a noun phrase with prepositions in English and German,
illustrating differences in morphological variation between languages. Putting the Chinese and English
pictures side by side shows the fact that Chinese has no variation in case and number. What makes the
Chinese picture higher is the presence of the classifier 4 (ge) and the particle B9 (de), which is needed
for longer than monosyllabic adjectives.

To Chapter 2.

The Chinese food grammar can be correctly defined in the BNF format, and also with a string-based
GF grammar. Both grammars are shown below. They are due to Ulysses (TODO full name), an SJTU
student who wrote them in a live demo during the GF tutorial in Shanghai.

Here is the BNF grammar, foodsChi.cf

nBn

Pred. Comment ::= Item "&" Quality
This. Item 1:= "X Kind

That. Ttem i:= "B Kind

Mod. Kind ::= Quality Kind
Wine. Kind 1= "E"

Cheese. Kind D= "PAEE

Fish. Kind 1= AT

Very. Quality ::= "R Quality

Fresh. Quality ::= "Hréffyr

Warm. Quality ::= "BHRH"
Italian. Quality ::= "EARFIXH"
Expensive. Quality ::= "BRH
Delicious. Quality ::= "ZEEKHY"
Boring. Quality ::= "JEMZHY"

The GF grammar is a straightforward variant:

concrete FoodChi of Food = {
flags coding = utf8 ;
lincat
Comment, Item, Kind, Quality = Str ;
lin

Pred item quality = item ++ "R" ++ quality ;

This kind = "X N ++ kind ;

That kind = "B A" ++ kind ;

Mod quality kind = quality ++ kind ;
Wine = ")@" ;

Cheese = "#j B&" ;

Fish = "&" ;

Very quality = "3 E" ++ quality ;
Fresh = "¥ # M

Warm = "B & B

Italian = "B X *'J _t MW
Expensive = "8 # B ;

Delicious = "% @K E’J" ;

Boring = "¥ Iz By ;

To properly render the food comments in Chinese involves a couple of hacks, which might not work in
a full-scale grammar such as the resource grammar. First, the classifier 4> (ge) happens to work for all
nouns in this grammar, and can hence be safely attached to the determiners in this grammar. Secondly,
the particle B9 (de) is here attached to the adjectives, which are polysyllabic. In the resource grammar
(Chapter 9), both elements are controlled by rules sensitive to the syntactic context.

To Section 2.9. Chinese is known for having reduplication. For instance, adjectives can be
reduplicated to weaken their effect: /)NNEY (xidio xido de “small small de”, ““a bit small”). Another
pattern is AABB to intensify two-syllable adjectives of the form AB. An example is 25t (piao liang,
“beautiful”), giving EiE 5t 5e (piao piao liang liang, “very beautiful”). The latter kind of reduplication
is not yet possible with string-based GF but also requires the use of discontinuous constituents, to be
introduced in Chapter 3.

Exercise. Extend the Food grammar with a category of one-syllable adjectives that can be used in the
category Quality either alone or as reduplicated. The reduplication is somewhat similar to the

Very constructor, but it cannot be iterated many times. Notice that the reduplication makes the
adjective two-syllabic, which means that the particle BJ (de) must be appended. Define some adjectives
in this class and give the corresponding English rules, saying for instance “this fish is a bit small”.

To Section 2.15. Lexing is a notorious problem in Chinese, because words are written together without
spaces in between. As the grammar examples show, a word can have one, two, three, or up to five
characters, and words are mostly much shorter than in English in terms of characters. In the BNF
grammar, each word is a sequence of characters without spaces in between, so that for instance this

expensive wine is delicious comes out as
XA BRK OB B OEWRH

(replacing each space by three to make them clearer). The normal orthography is
XA BB AVE R ERH

This is easy to produce by the unlexer —unchars. But to restore the word boundaries in parsing is
more difficult - in fact, it would require a lexicon and a parser, and still leave room for different choices.
In the GF grammar above, we have solved the problem by introducing spaces everywhere, that is, even
inside the words. Thus the sentence comes out as

XANBRMEREKRD

The word segmentation problem now gets a solution as a parsing problem, because each character is a

distinct token. To parse an unspaced string, you can use the GF command
> put string -chars “XPBRIBEREKRHN | parse

To Section 2.16. We have used Chinese characters directly in all grammars, with UTF-8 encoding.
Creating a transliteration for over 8,000 characters would not be easy. For instance, the use of the
phonetic Pinyin system would not do, because many Pinyin words - even if the tone is present - map to
several characters. Chinese characters are nowadays very well supported by editors, shells, and web

browsers, so this is not an issue. We have used simplified Chinese throughout the work.

To Chapter 3

Morphology in Chinese is non-existent, whereas classifiers and question formation as nice examples of
discontinuous constituents, which do require records. Also some adjective and adverb constructions
require parameters, as will be better shown in Chapter 9.

Incidentally, the FoodsChi . gf grammar could be written by just adding some rules to
FoodChi . gf, without changing the linearization types. However, we can make it more structured
and scalable by separating the classifiers from nouns, and the BY (de) particle from adjectives.

Thus we use a record with two strings for Kind, with a string s for the noun and c for its classifier:

lincat Kind = {s,c : Str} ; -— ¢ 1s the classifier

Similarly, we use a record with two strings for Quality, with a string s for the noun and d for the
particle, which can be empty:

lincat Quality = {s,p : Str} ; -- p is the particle By de, or empty

The common cases with classifier 4 (ge) and long adjectives with B (de) have designated oper’s:

oper
geKind : Str -> {s,c : Str} = \s -> {s =s ; c = ATy
longQuality : Str -> {s,p : Str} =\s -> {s =5 ; p = "H4"} ;

The predication and modification rules have to put the particle in the right place. Modification also has to
inherit the classifier of the base noun:

lin
Pred item quality = item ++ "®" ++ quality.s ++ quality.p ;
Mod quality kind = {s = quality.s ++ quality.p ++ kind.s ; ¢ = kind.c}

Classifiers are used in singular determiners, while plural determiners omit them:

This kind = "3X" ++ kind.c ++ kind.s ;

.

These kind = "iIX" ++ "#£v 44 xind.s ;

Here is the complete grammar written in the way just specified:

concrete FoodsChi of Foods = {
flags coding = utf8 ;
lincat
Comment, Item = Str ;
Kind = {s,c : Str} ; -— ¢ 1s the classifier
Quality = {s,p : Str} ; -- p is the particle B de, or empty
lin

Pred item quality = item ++ "®@" ++ quality.s ++ quality.p ;

This kind = "X" ++ kind.c ++ kind.s ;
That kind = "#" ++ kind.c ++ kind.s ;
These kind = "iX" ++ "£" 414 kind.s ;
Those kind = "#" ++ "£" +4+ kind.s ;

Mod quality kind = {
s = quality.s ++ quality.p ++ kind.s ;
c = kind.c
b

Wine geKind ")B"

Pizza = geKind "kt BF " ;

Cheese = geKind "#§ B&" ;

Fish = geKind "#&"
Very quality = longQuality ("3F &" ++ quality.s) ;
Fresh = longQuality "¥7 #" ;
Warm = longQuality "ig #&»
Italian = longQuality "= XK # R ;
Expensive = longQuality "B &|" ;
Delicious = longQuality "3& k" ;
Boring = longQuality "3 BZ" ;

oper
geKind : Str -> {s,c : Str} = \s ->

{s =s;c="M"};

longQuality : Str -> {s,p : Str} = \s ->
{S =s ; p = "E’}]"}

Exercise. Add some nouns with other classifiers than ge, as well as one-syllable adjectives, to the
grammar. Implement them for both English and Chinese, and make sure the translations come out

correct.

To Chapter 4

To Section 4.4. With pattern-matching on strings, it is easy to decide whether an adjective has one or
more syllables. Assuming the linearization type of the FoodsChi grammar (previous Chapter), we can
define the following “smart paradigm”:

oper mkAdj : Str -> {s,p : Str} = \s -> case s of {
? => {s =word s ; p =[]} ;
_=> {s =word s ; p = "y
s

As another example of string matching, here is a helper function that enables the grammarian to

postpone the decision on whether to put spaces inside words:

oper
bword : Str -> Str -> Str = \x,y -> X ++ y ;
-- change to x + y to treat words as single tokens

word : Str -> Str = \s -> case s of {
x@? + y@? + z@? + u@? => bword x (bword y (bword z u)) ;
x@? + y@? + z@? => bword x (bword y z) ;
x@? + y@? => bword X y ;
=> s

b

The function word thus converts a string of characters (up to length 4) to a string of tokens. But this
behaviour can be changed by just changing the operator ++ in bword to +. We have used this to
produce a Pinyin version of the grammar, where syllables inside words are written without spaces.

To Section 4.7. Overloaded paradigms use the one-argument function to select the most common
inflection patterns. Even though Chinese doesn’t have inflection, the selection of the classifier is a similar
task, where 4 is the most common choice. Thus mkN looks as follows:

oper mkN = overload {

mkN : (man : Str) -> N = \n -> lin N (mkNoun n "4“W ;
mkN : (man : Str) -> Str -> N = \n,c -> lin N (mkNoun n c)
o

To Chapter 5

The Chinese resource grammar API is of course the same as in the other languages. The lexicon

instance and functor instantiation thus work as expected:

-—-# -path=.:alltenses

concrete FoodsRChi of Foods = FoodsI with
(Syntax = SyntaxChi),

(LexFoods = LexFoodsChi) ;

instance LexFoodsChi of LexFoods =

open SyntaxChi, ParadigmsChi in {

flags coding = utf8 ;

oper
wine N = mkN ";H" ;
pizza N = mkN "HEEG"

cheese N = mkN "#iE&" ;
fish N = mkN "&"

fresh A = mkA wEr ;
warm A = mkA R
italian A = mka "EKXFX" ;
expensive A = mkA "BHE" ;
delicious A = mkA nEEK ;
boring A = mkA "ERZ

To Section 5.17. Notice that we use alltenses in the path for Chinese. The reason is that there is

no present version of the Chinese grammar, and there is very little need for it. However, Chinese

has a notion of aspect, which is expressed by different particles. A table similar to Figure 44 shows the

aspect (and polarity) variation of the Chinese clause, according to the resource grammar:

> i
> p
Pos
Pos
Pos
Pos
Pos
Neg
Neg
Neg
Neg
Neg

alltenses/LangEng.gfo alltenses/LangChi.gfo

-lang=Eng -cat=Cl “I sleep” | 1 -lang=Chi -table -unchars
APlain : FREE

APerf : REET

ADurStat : HKEE

ADurProg : R IERE

AExper . IREES
APlain s BIREE
APerf : BTET
ADurStat : RFHE

ADurProg : FR&TERE
AExper s BOREES

More about aspects will be said in Chapter 10.

To Chapter 7

The next picture is a Chinese version of Figure 52, showing an editing session with the Chinese Food

grammar.

Food View: [column

Startcat: | Comment % |From:[chi & 1To:/ an ¢ [: Clear)(Random :]

Abstract: 500 Pred (That Fish) Fresh
Chi 5 R B E TR

Eng == that fish is fresh
Hin & I TEAT ATAT 8
Ita <%= quel pesce & fresco

B B 2 HEN

To Chapter 9

The Chinese miniature resource grammar originates in the work of Zhuo Lingiqige. She built a version
extended with adverbs, questions, and aspects, which required more complex linearization types than
the ones shown here. The complete code of the miniature grammar is given in the Appendix A section
below.

To Section 9.3. Here are the linearization types of the key phrasal and lexical categories in Chinese, as
needed in the miniature resource grammar.

lincat
Cl = {s : Bool => Str} ;
NP = {s : Str} ;
VP = {verb : Verb ; compl : Str} ;
AP = {s : Str ; monoSyl : Bool} ;
CN = {s : Str ; c : Str} ;

Det = {s : Str ; n : Number} ;

N = {s : Str ; ¢ : Str} ;
A = {s : Str ; monoSyl : Bool} ;
v = {s : Str} ;

V2 = {s : Str} ;

Very few features are used: in fact, even the monoSy1 feature of adjective could be replaced as a
discontinuous particle, as we did in the Foods grammar in Chapter 3. The classifier field, ¢, of common
nouns could in principle be replaced by a parameter, but this parameter would have hundreds of values.
Determiners have a number feature, which is used for selecting the classifier (see below).

To Section 9.4. Here is the linearization rule for predication:

lin PredVP np vp = {s = \\p => np.s ++ neg p ++ vp.verb.s ++ vp.compl} ;

It defines the order subject-negation-verb-complement. There is no agreement between the subject and
the verb. The negation is put in place with the operation neg, which returns "5 for the negative
polarity. In the full resource grammar, clauses in Chinese also depend on aspect, the negation word

depends on the verb and the aspect, and verb phrases have more fields, e.g. for adverbs.

To Section 9.5. Here is the linearization rule for complementation:

lin ComplV2 v2 np = {verb = v2 ; compl = np.s} ;

The reason to keep VP discontinuous at all is that material is sometimes attached to the position before

the complement. But this is only exploited in the full resource grammar.

To Section 9.6. Here is the linearization rule for determination:

lin DetCN det cn
Sg => {s
Pl => {s = det.s ++ b gy cn.s}

case det.n of {

det.s ++ cn.c ++ cn.s} ;

Thus the inherent number of the determiner is needed to decide whether the inherent classifier of the
noun is overridden.

To Section 9.7. Here is the linearization rule for modification:

lin ModCN ap cn = case ap.monoSyl of {
True => {s = ap.s ++ cn.s ; Cc = cn.c} ;
False => {s = ap.s ++ "BJ" ++ cn.s ; c = cn.c}

b}

In Section 3, we saw that a particle field would actually be nicer to use than the monoSy1 parameter,

since it doesn’t require case analysis.

To Section 9.8. Lexical insertion is done with simple identities, except for verbs, where the complement
field is initialized as the empty string:

lin UseV v = {verb = v ; compl = []} ;

To Section 9.15. Coordination in Chinese is interesting, because the words for and and or depend on
what kind of phrases are combined. This can be regulated by the following parameter type:

param
SForm = Phr PosType | Sent;
PosType = APhrase | NPhrase | VPhrase ;

The type SForm is hierarchical, to reflect the fact that and has more variation than or:

lin
and Conj = {s = table {
Phr NPhrase => "H" ;
Phr APhrase => "M" ;
Phr VPhrase => "X" ;

Sent => []
}
}
or Conj = {s = table {
Phr => """

Sent => word "J&ERE"

}

The coordination rules select relevant values of the SForm parameter:

lin
ConjNP co x y = {s = x.s ++ co.s ! Phr NPhrase ++ y.s} ;
ConjS co xy = {s = x.s ++ co.s ! Sent ++ y.s} ;

The other values come out usable in the full-scale resource grammar.

To Chapter 10

To Section 10.2. After the completion of the book, the Resource Grammar Library has grown to 26
languages, of which Chinese is the latest one. It is not the first East-Asian language, but Thai and
Japanese were written before it. The Thai grammar was used for bootstrapping Chinese. The languages
share some important features - the absence of inflection and the use of classifiers - while they differ
quite a lot in word order.

Here is a summary of the code size (in lines of GF code) and effort (in person months) for Chinese and
some other new languages, computed in the same way as in Figure 77 on p. 223. The “morpho” part
includes the definitions of lexical categories and lexicon building functions. In the table, it comprises just
Paradigms modules, as well as Morpho and Irreg (in case of Dutch). Parts of Res could also be

counted there, in particular in Japanese. The English figures are from the book.

language syntax | morpho | lexicon | total months | start
Chinese 966 118 562 | 1646 1]2012
Dutch 1846 1024 487 | 3357 212009
English 1025 772 506 [2303 6 | 2001
Japanese 3435 65 470 | 3970 512011
Thai 1877 95 473 | 2445 212007

A general trend in resource grammar development is that the required effort goes down. This is due to
the stability of the abstract syntax (where the English effort includes coping with several changes) and to
the availability of closely related grammars to bootstrap from.

To Section 10.3. The Chinese grammar was bootstrapped from Thai, following closely the
recommended workflow (steps 1-8 on p. 224), except for Step 7. Thus we did not comment out the
contents of the modules, but started with a Thai grammar that was just called Chinese. The next step
was to comment out the contents of the lexicon file contents (LexiconChi and StructuralChi) and to
replace all in-lined strings in rules (such as the copula) with either their Chinese equivalents (if easily

found in grammar books or in the mini resource) or a default dummy string.

In the next stage, the workflow was lexicon-driven. We first populated the Swadesh list words with the
Chinese equivalents found in the Wikipedia. Then we used various other freely available word lists to
find more words. Lexicon extraction was easy for content words, because we only needed to know the

part of speech - with the exception of the classifier of nouns, which were all initialized to 4 (ge).

With an almost complete lexicon, it was possible to generate Chinese sentences and assess their
correctness. At this point, it became obvious that the Chinese word order is radically different from
Thai. Even though clauses follow the SVO pattern in both languages, the order inside noun phrases is
completely different, and so is the placement of adverbs.

At this point, it was appropriate to change to the syntax-driven work flow and follow a miniature
resource implementation, extended with some categories and functions. This implementation was work
by a Chinese student in connection with a course. It had taken her three weeks to write, while the
Thai-based lexicon driven baseline took just one working day. Merging the two took half a working
day, but after that, the grammar was in a very good shape: it was complete with respect to the API, and
most syntactic rules were correct. The rest of the work was mostly fixing bugs in individual rules not

present in the miniature resource, such as relative clauses and passives.

As a conclusion, a mixed lexicon-syntax-based workflow can be recommended for many projects that
bootstrap a language from an already existing one. For many languages, the lexicon part of it would of
course also involve substantial work in implementing the morphology. If the linearization types are too

far apart, bootstrapping the syntax could then also be far more complex than porting Thai to Chinese.

To Section 10.4. The full resource grammar extends the miniature resource grammar with many more
categories and functions, which makes it necessary to even make some of the old ones more general.
Most notably, this affects the clause category. In the full resource grammar, the linearization type is

lincat Cl =
{s : Polarity => Aspect => Str ; np: Str ; vp: Polarity => Aspect => Str}

The addition of an aspect feature is obvious: it corresponds to the variable tense in English and other
Western languages. But the np and vp fields are new. Their purpose is to make it possible to form
questions with interrogative adverbials. For instance, where does he walk can be expressed by placing
the word where between the subject and the verb phrase:

it WE E

he where walk

In fact, the s field could be omitted altogether, because it can always be constructed from the other

fields. The implementation uses the s field mainly to make it easier to test the linearizations of clauses and

their different forms. (This very phrase can moreover be expressed by placing where to the end.)

Another peculiar category in adverbs, Adv. In Chinese, the place of an adverb in a sentence depends
on whether it is an adverb of manner (after the verb) or time or place (before the verb).

To Section 10.6. Pinyin is a standard way of writing Chinese with Latin letters, with or without
diacritics for the tones. There are good resources on the web for converting Chinese characters to
Pinyin strings and back. The conversion from characters to Pinyin is almost deterministic, whereas the
inverse conversion may yield many results, even if the tone is marked. In the resource grammar
implementation, the master grammar is in Chinese characters. But the library provides a script for

converting all strings in grammar modules to Pinyin. As an example, the rule
lin very AdA = {s = word "3EE"} ;
is converted to
lin very AdA = {s = word “feilchang2"} ;

The conversion is applied to all string literals in the grammar’s source modules. In addition, the
operation bword (Section 4.4 above) is changed to using + instead of ++.

To Section 10.9. The core resource grammar for Chinese was exceptionally easy to implement, mostly
due to the fixed word order and the lack of morphology. While the core is sufficient for translating other
languages to Chinese, it lacks many forms of expression that would be needed in order to parse
Chinese. At the time of writing this, extending the ExtraChi module has not even started. But some
obvious candidates have been mentioned earlier: the reduplication of adjectives (Section 2.9) and the
aspect system of Chinese (Section 5.17). Earlier work on similar tasks includes e.g. the LFG grammar
of Fang and Holloway King (2007), with publication details in Appendix F below.

To Section 10.10. The lexicon-driven workflow described above used several web resource, of which
the most important one was the Swadesh list in the Wiktionary,

http://en.wiktionary.org/wiki/Appendix:Mandarin_Swadesh_list

As a complement to the lists, Google translate was used to bootstrap the lexicon. The best way to use it
for this purpose is to translate small English sentences or phrases, which put the words into context. This
helps disambiguate the English words, for instance tell verbs from nouns. It can also help extract the

http://www.google.com/url?q=http%3A%2F%2Fen.wiktionary.org%2Fwiki%2FAppendix%3AMandarin_Swadesh_list&sa=D&sntz=1&usg=AFQjCNHqwbYrtkb25xQTlJuXo0eGxWQn1g

classifiers of the nouns. For instance, the inpute five cats yields the answer T 238, from which we can

extract both the noun J# and the classifier R and thereby create the lexical entry

lin cat N = mkN "J@" "R" ;

To Appendix A

A.1 Abstract Syntax is the same as in the book.

A.2 Auxiliary resource module

resource ResChi = open Prelude in {
flags coding=utf8;
—-— parameters
param
Number = Sg | Pl ;
SForm = Phr PosType | Sent;

PosType = APhrase | NPhrase | VPhrase ;

-- parts of speech

oper
VP = {verb : Verb ; compl : Str} ;
NP = {s : Str} ;

-- for morphology

{s : Str; c : Str} ;
Adj : Type = {s : Str; monoSyl: Bool} ;
Verb : Type = {s : Str} ;

Noun : Type

mkNoun : Str -> Str -> Noun = \s,c -> {s = word s ; ¢ = word c};

mkAdj : Str -> Adj = \s -> case s of {
? => {s = word s ; monoSyl = True} ;
=> {s = word s ; monoSyl = False}

copula : Verb = mkVerb "m&" ;

mkVerb : (v : Str) -> Verb = \v ->

{s = word v} ;
neg : Bool -> Str = \b -> case b of {True => [] ; False => "f"}

-—- for structural words

mkDet : Str -> Number -> {s : Str ; n : Number} = \s,n -> {
s = word s ;
n=n
b
pronNP (s Str) -> NP = \s -> {
s = word s

-— Write the characters that constitute a word separately.

-- This enables straightforward tokenization.

bword : Str -> Str -> Str = \x,y -> X ++ y ;
-- change to x + y to treat words as single tok ens

word : Str -> Str = \s -> case s of {
x@? + y@? + z@? + u@? => bword x (bword y (bword z u)) ;
xQ@? + y@? + z@? => bword x (bword y z) ;
x@? + y@? => bword x y ;
_ =>s
b

A.3 Concrete syntax

concrete GrammarChi of Grammar = open ResChi, Prelude in {
flags coding = utf8;

lincat
S = {s : Str} ;
Cl = {s : Bool => Str} ;
NP = ResChi.NP ;
-- {s : Str} ;
VP = ResChi.VP ;
-- {verb : Verb ; compl : Str} ;
AP = {s : Str; monoSyl: Bool} ;
CN = ResChi.Noun ; -— {s : Str; c : Str} ;
Det = {s : Str ; n : Number} ;
N = ResChi.Noun ; -- {s : Str; c : Str} ;

A = ResChi.Adj
V = ResChi.Verb;
V2 = ResChi.Verb

AdA = {s : Str}

Pol = {s : St
Tense = {s

Conj

lin
UseCl t p cl

PredVP np vp

ComplV2 v2 np

verb = v2 ;
compl = np.s
b
UseV v = {
verb = v ;
compl = []

DetCN det cn

r

’

’

’

Str}

{s

{s

{

Sg => {s
Pl => {s

ModCN ap cn =

’

b

True => {s
False => {s

o

CompAP ap = {

verb = copula ;

’

-— {s : Str; monoSyl: Bool} ;
-- {s : Str}

Bool} ;

{s : SForm => Str} ;

t.s ++ p.s ++ cl.s ! p.b} ;

\\p => np.s ++ neg p ++ vp.verb.s ++ vp.compl}

case det.n of {
det.s ++ cn.c ++ cn.s} ;
det.s ++ "¥" 44+ cn.s}

case ap.monoSyl of {
= ap.s ++ cn.s ; ¢ = cn.c} ;
= ap.s ++ "M" ++ cn.s ; ¢ = cn.c}

compl = ap.s ++ "Hy"

o

AdAP ada ap =

s = ada.s ++ ap.s

monoSyl = False

o

ConjNP co x y

{

s = X.s ++ co.s

o

ConjS co x y

{

S

’

Phr NPhrase ++ y.s

X.s ++ co.s ! Sent ++ y.s} ;

’

UseN n = n ;
UseA adj = adj ;

a Det = mkDet "—" Sg ;
every Det = mkDet "#" Sg ;
the Det = mkDet "B sg ;

this Det = mkDet "X" Sg ;
these Det = mkDet "iX" Pl ;
that Det = mkDet "B sg ;
those Det = mkDet "#H" Pl ;

i NP = pronNP RE: A
she NP = pronNP i A

we NP = pronNP "EAI

very AdA = ss (word "JE")

and Conj = {s = table {
Phr NPhrase => "HlI" ;
Phr APhrase => "M" ;
Phr VPhrase => "X" ;
Sent => [1]
}
b
or Conj = {s = table {
Phr => A
Sent => word "WE"
}
b
Pos = {s =[] ; b = True} ;
Neg = {s = [] ; b = False} ;
Pres = {s = []} ;
Perf = {s = [1} ;

A.4 Morphological paradigms API

resource ParadigmsChi = GrammarChi [N,A,V] **
open ResChi, GrammarChi, Prelude in {

flags coding=utf8;

oper
mkN = overload {
mkN (man Str) -> N
= \n -> lin N (mkNoun n "/N") ;
mkN (man Str) -> Str -> N
= \n,c -> 1lin N (mkNoun n c)
b
mkA (small Str) -> A
= \a -> lin A (mkAdj a) ;
mkV (walk Str) -> V
= \s -> lin V (mkVerb s) ;
mkV2 = overload {
mkV2 (love Str) -> V2
= \love -> lin V2 (mkVerb love) ;
mkV?2 (love V) => V2

A.5 Test lexicon

concrete TestChi of Test

flags coding=utf§;

\love -> 1lin V2 love

’

GrammarChi ** open ParadigmsChi in {

lin
man N = mkN "BAY;
woman N = mkN "ZA"
house N = mkN "BF"
tree N = mkN "R R
big A = mkA "K"
small A = mkA moe
green A = mkA "£"
walk V = mkV nEn ;
arrive V = mkv "Er
love V2 = mkV2 nEn o
please V2 = mkv2 "B ;

A.6 Syntax API is the same as in the book, changing Ita to Chi.

To Appendix F

Fang, J. ; King, T. H. An LFG Chinese grammar for machine use. Proceedings of the GEAF 2007
Workshop; 2007 July 13-15; Stanford, CA. An LFG grammar for parsing Chinese developed at

Xerox.

Magistry, P. and K. Gerdes. Paddy Fields: A Topological Description of Chinese Word Order
4th International Conference on Meaning-Text Theory, 2009, Montréal. An approach similar to GF'’s

discontinuous constituents.

http://www.google.com/url?q=http%3A%2F%2Fwww.gerdes.fr%2Fpapiers%2F2009%2Fpapiers%2F2009%2FPaddyFields.pdf&sa=D&sntz=1&usg=AFQjCNFaRIKribOZf1nz_ccBw-TWRTV0GQ
http://www.google.com/url?q=http%3A%2F%2Folst.ling.umontreal.ca%2Fmtt09%2F&sa=D&sntz=1&usg=AFQjCNF3eI7sPTo0UK6nxk64OydC6M_ZHQ

