
Grammatical Framework: A Hands-On

Introduction

Aarne Ranta

CADE-23, Wroc law 1 August 2011



Preamble



Whom is this tutorial for

Interest in some of

• natural languages

• formal languages

• natural language interfaces

• translation

Assumed background: programming, some mathematics, some logic

Not assumed: linguistics



What you will learn

Build multilingual translation systems on the web

Build natural language interfaces and reversible converters

Explore the structure of any of 20 languages in the GF library

Get motivated to build libraries for other languages



Demo: the MOLTO Phrasebook

http://www.grammaticalframework.org/demos/phrasebook/

Traveller’s phrases for 15 languages

High-quality translation via a semantic interlingua

Incremental parsing and disambiguation

Built on a declarative GF grammar + generic components

Available on the web and for Android phones (Phrasedroid on the

Market)

http://www.grammaticalframework.org/demos/phrasebook/


The history of GF

1988: type-theoretical grammar = Montague grammar in type theory

1992: natural language interface to ALF proof system

1998: multilingual document authoring at Xerox Research, Grenoble

2010: MOLTO (= Multilingual On-Line Translation), EU-Strep



More on GF

CADE lecture on Thursday at 9:00

http://www.grammaticalframework.org

Second GF Summer School in Barcelona, 15-26 August

Book by AR, Grammatical Framework: Programming with Multilingual

Grammars, CSLI, Stanford, 2011.

http://www.grammaticalframework.org


Schedule for today

14.00-15.30

• GF on the map of linguistics, computer science, and logic.
• Building a simple translation system and its web interface.
• Scaling up a translation system: problems and tools.
• Using the GF Resource Grammar Library.
• Specifying the translation system for the hands-on session.

16.00-17.30

• Hands-on session: porting translation to a new language.
• More advanced GF: grammars and reasoning.
• More advanced GF: computational grammars for the world.



GF on the map

Linguistics: a grammar formalism

• equivalent to PMCFG, polynomial parsing
• multilingual grammars related by interlingua

Computer science: a compiler framework

• formalizes the idea of abstract syntax + concrete syntax
• framework for multi-source multi-target compiler/decompilers
• a special-purpose functional programming language

Logic: a logical framework

• based on Martin-Löf type theory and ALF
• GF = LF + concrete syntax rules



Simple GF grammars



The basic modules of GF

Abstract syntax: categories and functions

abstract Cade = {
cat
Term ;

fun
var_x : Term ;
Abs : Term -> Term ;

flags startcat = Term ;
}

Concrete syntax: linearization types and linearizations

concrete CadeSymb of Cade = {
lincat
Term = Str ;

lin
var_x = "x" ;
Abs n = "|" ++ n ++ "|" ;

}



GF and context-free grammars

The above GF grammar,

abstract Cade = {
cat
Term ;

fun
var_x : Term ;
Abs : Term -> Term ;

}
concrete CadeSymb of Cade = {
lincat
Term = Str ;

lin
var_x = "x" ;
Abs n = "|" ++ n ++ "|" ;

}

is in fact equivalent to a labelled BNF grammar,

var_x. Term ::= "x"
Abs. Term ::= "|" x "|"

So why bother? Why make it so verbose?



Reason 1: multilingual grammars

One abstract + many concretes

concrete CadeEng of Cade = {
lincat
Term = Str ;

lin
var_x = "x" ;
Abs n = "the absolute value of" ++ n ;

}

concrete CadeFre of Cade = {
lincat
Term = Str ;

lin
var_x = "x" ;
Abs n = "la valeur absolue de" ++ n ;

}



Compilers as multilingual grammars

Source and target language related by abstract syntax

iconst_2

iload_0

2 * x + 1 <-----> plus (times 2 x) 1 <------> imul

iconst_1

iadd



A GF grammar for Java and JVM

abstract Expr = {
cat Exp ;
fun plus : Exp -> Exp -> Exp ;
fun times : Exp -> Exp -> Exp ;
fun one, two : Exp ;
}

concrete ExprJava of Expr = { concrete ExprJVM of Expr= {
lincat Exp = Str ; lincat Expr = Str ;
lin plus x y = x ++ "+" ++ y ; lin plus x y = x ++ y ++ "iadd" ;
lin times x y = x ++ "*" ++ y ; lin times x y = x ++ y ++ "imul" ;
lin one = "1" ; lin one = "iconst_1" ;
lin two = "2" ; lin two = "iconst_2" ;
} }



Compiling natural language

the absolute value of x x:n itseisarvo

\ /

(Abs var_x)

/ \

la valeur absolue de x |x|





Multi-source multi-target compiler-decompiler



Using GF grammars in the GF interpreter

1. Download and install GF, http://grammaticalframework.org/download/

2. Each module foo has to be in the file foo.gf

3. Start the interpreter with

gf CadeEng.gf CadeSymb.gf

4. Commands and pipes:

> parse -lang=Eng "the absolute value of x"

> linearize -lang=Symb Abs var_x

> parse -lang=Eng "the absolute value of x" | linearize -lang=Symb

> generate_random | linearize

http://grammaticalframework.org/download/


Using GF grammars in web applications

1. Compile the grammars into PGF = Portable Grammar Format

$ gf -make CadeEng.gf CadeSymb.gf

wrote Cade.pgf

2. Start the PGF server

$ pgf-http

Starting HTTP server, open http://localhost:41296/ in your web browser

Options {documentRoot = "/home/aarne/.cabal/share/gf-server-1.0/www", port = 41296}

3. Copy Cade.pgf to the grammar directory under documentRoot

$ cp Cade.pgf /home/aarne/.cabal/share/gf-server-1.0/www/grammars

4. In your web browser, open http://localhost:41296/



Building GF grammars in the cloud

This is still experimental, but needs no software to be installed!

http://www.grammaticalframework.org/demos/gfse/

http://www.grammaticalframework.org/demos/gfse/


Solving linguistic problems



Reason 2: scaling up the grammar

Let’s extend the grammar a bit:

abstract Cade = {
cat
Proposition ; Term ;

fun
var_x : Term ;
Abs : Term -> Term ;
Positive : Term -> Proposition ;

flags startcat = Proposition ;
}
concrete CadeEng of Cade = {
lincat
Term, Proposition = Str ;

lin
var_x = "x" ;
Abs n = "the absolute value of" ++ x ;
Positive n = n ++ "is positive" ;

}



The problem of agreement

concrete CadeFre of Cade = {

lincat

Term, Proposition = Str ;

lin

var_x = "x" ;

Abs n = "la valeur absolue de" ++ x ;

Positive n = n ++ "est positif" ;

}

But in French, adjectives have gender agreement

• masculine: x est positif
• feminine: la valeur absolue de x est positive

How can we use the same abstract syntax?



Caution: some linguistic torture

The next few slides contain linguistic details. The serve a triple purpose

• show how GF deals with linguistic problems

• maybe, make you interested in contributing to their solution

• but more probably, make you motivated to use the libraries

So don’t panic - you can program in GF with little attention on or

knowledge of low-level linguistic details.



Solution: parametric variation

We introduce a parameter type of genders and change the linearization type of
numbers into a record with a gender:

concrete CadeFre of Cade = {
param
Gen = Masc | Fem ;

lincat
Proposition = Str ; Term = {s : Str ; g : Gen} ;

lin
var_x = {s = "x" ; g = Masc} ;
Abs n = {
s = "la valeur absolue de" ++ x.s ;
g = Fem
} ;

Positive n = n.s ++ "est" ++ case n.g of {
Masc => "positif" ;
Fem => "positive"
} ;

}



Inflection tables

Context-free grammar has strings and concatenation.

GF also has parameters and records.

We need one more thing: tables, which are functions on parameters:

table { -- a table

Masc => "positif" ;

Fem => "positive"

}

: Gen => Str -- the type of the table



Adjectives

We want to use adjectives for both

• predication: x is positive
• modification: a positive integer

We reformulate the abstract syntax once more

cat

Proposition ; Term ; Adjective ; Noun ;

fun

Pred : Term -> Adjective -> Proposition ;

Mod : Adjective -> Noun -> Noun ;

Positive : Adjective ;

Integer : Noun ;



Combinations with adjectives

parameters English French
Sg, Masc positive integer entier positif
Sg, Fem positive value valeur positive
Pl, Masc positive integers entiers positifs
Pl, Fem positive values valeurs positives

Moreover, French adjectives have a position:

• prefix: bon vin ”good wine”

• postfix: vin intéressant ”interesting wine”



The syntax of French adjectives

param
Num = Sg | Pl ;
Gen = Masc | Fem ;
Pos = Pref | Postf ;

lincat
Adjective = {s : Gen => Num => Str ; p : Pos} ;
Noun = {s : Num => Str ; g : Gen} ;

lin
Mod adj noun = {
s = table {n =>
let
adjs = adj.s ! noun.g ! n ;
nouns = noun.s ! n

in case adj.p of {
Pref => adjs ++ nouns ;
Postf => nouns ++ adjs
}

} ;
g = noun.g
} ;



The morphology of French adjectives

To linearize an adjective, we could write

lin Positive = {

s = table {

Masc => table {Sg => "positif" ; Pl => "positifs"} ;

Fem => table {Sg => "positive" ; Pl => "positives"}

} ;

p = Postf

} ;

But this is tedious to repeat for all adjectives.

We eliminate the repetition by some functional programming.



An auxiliary operation for French adjectives

An oper definition defines a reusable concrete-syntax function:

oper mkAdjective :
Str -> Str -> Str -> Str -> Pos -> Adjective =
\msg,mpl,fsg,fpl,p -> {
s = table {
Masc => table {Sg => msg ; Pl => mpl} ;
Fem => table {Sg => fsg ; Pl => fpl}
} ;

p = p
} ;

The notation \msg,mpl,fsg,fpl,p -> ... is lambda abstraction.

Now we can write

lin Positive = mkAdjective "positif" "positifs"
"positive" "positives" Postf ;



A smart paradigm for French adjectives

We use pattern matching to define the regular variations of French adjectives, and
also assume most adjectives are postfix.

oper regAdjective : Str -> Adjective =
\msg -> case msg of {
v + "if" => mkAdjective msg (msg + "s") (v + "ive") (v + "ives") Postf ;
ch + "er" => mkAdjective msg (msg + "s") (ch + "ère") (ch + "ères") Postf ;
_ => mkAdjective msg (msg + "s") (msg + "e") (msg + "es") Postf
} ;

Now we can write really concisely

lin
Positive = regAdjective "positif" ;
Prime = regAdjective "premier" ;
Even = regAdjective "pair" ;



The GF Resource Grammar Li-
brary



End of linguistic torture

Software libraries are a key to efficient programming. They

• encapsulate expert knowledge

• hide low-level details

• enable productive programming without expert knowledge

Grammars are an obvious object for such libraries. They should give

• morphological inflection

• syntactic combinations (word order, agreement)



The grammar library API

Types

Cl clause John loves Mary
NP noun phrase John
V2 two-place verb love
A adjective old
CN common noun man

Syntax functions (overloaded, mkC for value of type C)

mkCl NP -> V2 -> NP -> Cl John loves Mary
mkCl NP -> A -> Cl John is old
mkCN A -> CN -> CN old man

Morphology functions (overloaded, mkC for value of type C)

mkA Str -> A cher, chers, chère, chères
mkA Str -> Str -> A frais, frais, frâıche, frâıches



Using the library in concrete syntax

concrete CadeFre of Cade = open SyntaxFre, ParadigmsFre in {

lincat

Proposition = Cl ;

Adjective = A ;

Term = NP ;

Noun = CN ;

lin

Pred term adj = mkCl term adj ;

Mod adj noun = mkCN adj noun ;

Positive = mkA "positif" ;

}



The GF Resource Grammar Library

Complete morphology + comprehensive syntax

20 languages: Afrikaans, Bulgarian, Catalan, Danish, Dutch, English,

Finnish, French, German, Italian, Nepali, Norwegian, Persian, Polish,

Punjabi, Romanian, Russian, Spanish, Swedish, Urdu

Under construction, but available: Amharic, Arabic, Hindi, Latin, Lat-

vian, Thai, Turkish.

Effort: 3-5 kLOC of GF code, 3-9 person months per language.



Exploring the library

Browse the synopsis,

http://www.grammaticalframework.org/lib/doc/synopsis.html

Try inflection, parsing, generation, and translation in the GF shell

http://www.grammaticalframework.org/lib/doc/synopsis.html


Hands-on: a grammar for logic
and mathematics



The grammar

Available in

http://www.grammaticalframework.org/gf-tutorial-cade-2011/code/

• Cade.gf

• CadeEng.gf

• CadeFre.gf

Either copy this code to your computer, or follow the session on the

screen.

http://www.grammaticalframework.org/gf-tutorial-cade-2011/code/


The task

1. Go through the code

2. Make some experiments in the shell

3. Port the code to a new language available in the Resource Grammar

Library



Later work

Functors: share concrete syntax code across language (GF book,

Chapter 5)

Logic in natural language: improving the style (CADE lecture on

Thursday)



More advanced GF: grammars
and reasoning



Type theory and abstract syntax

Dependent types

Higher-order abstract syntax

Semantic definitions

Transfer functions

See the GF book, Chapters 6 and 8, and also CADE lecture on Thurs-

day



More advanced GF: computa-
tional grammars for the world



Extending the resource grammar

There are 6,000-26 languages left!

Are they all possible?

Are some languages more complex than others?

See the GF book, Chapters 9 and 10



Extending the coverage of grammars

Building large-scale lexica

Using statistical language processing

• to recover from errors (robustness)

• to generate grammars semi-automatically (bootstrapping)

See http://www.molto-project.eu

http://www.molto-project.eu

