
Best Practices in GF Grammar Writing

Aarne Ranta

GF Summer School 2013, based on MOLTO Deliverable 2.3



Contract No. FP7-ICT247914
Project full title MOLTO - Multilingual Online Translation
Deliverable D2.3 Grammar Tool Manual and Best Practices
Distribution level Public
Contractual date of delivery 30 June 2012
Actual date of delivery 30 June 2012
Type Prototype
Status version V1.0
Authors A. Ranta, J. Camilleri, G. Détrez, R. Enache, T. Hallgren
Task responsible UGOT
Other contributors O. Caprotti, D. Dannélls, I. Listenmaa, J. Saludes

http://www.molto-project.eu/sites/default/files/MOLTO D2.3.pdf

http://www.molto-project.eu/sites/default/files/MOLTO_D2.3.pdf


MOLTO’s mission

Producer-oriented translation: providers of information can rely on

the translations so much that they can publish them.

As opposed to consumer-oriented translation, which is applied by

consumers to get a rough idea of what the original document is about.

• This is the main scenario in current machine translation (e.g.

Google translate, Microsoft Bing)

Dissemination = producers’ translation

Assimilation = consumers’ translation



Responsibility

Think of a French e-commerce site text

prix: 99 euros

by accident translated to Swedish

pris: 99 kronor

(99 kronor = 11 EUR)



Is the e-commerce site committed to the price?

• yes, if it is producer’s transtion

• no, if it is consumer’s translation



FAHQT

Fully Automatic High-Quality Translation, “impossible, not only in
foreseeable future, but in principle” (Bar-Hillel 1964)

Bar-Hillel’s example:

The pen is in the box.

The box is in the pen.

How to translate pen into Swedish? In one sense, pen = penna (writing
utensil). In another sense, pen = lekhage (enclosure where children
play).

To select the sense requires unlimited intelligence and a “universal
encyclopedia”.



Solution: restricted language

Consumer tools must cope with any document that is thrown at them.

Producer tools can assume a limited fragment of language.

Thus an e-commerce site can be restricted to translating product de-

scriptions, order forms, and customer agreements.

MOLTO’s mission was to make this feasible for different users and

scenarios, and scalable from small fragments of few languages to larger

fragments of large numbers of simultaneous languages.



Approaching full precision and full coverage

x-axis: the number of “concepts” (words, multi-word terms, construc-

tions)



How to make restricted FAHQT feasible

The GF programming language and compiler

The Resource Grammar Library

Tools for grammar writers

Tools for translation



Building a web-based translation system

Two steps:

1. Write a multilingual grammar.

2. Set up a web interface.

The first step requires manual programming work.

The second step can use GF’s standard interfaces out of the box, or

modify them to different purposes.



A quick example: shops

A small fragment of the MOLTO phrasebook (Détrez et al., 2012).

Phrases like the bar is open

English, Finnish, and French.

The complete grammar code





The translation system in action

1. Select a property.



2. Obtain translations.



3. Change “bar” to “station”.



Building a web application

1. Compile your multilingual grammar to PGF. In the present case:

$ gf -make ShopsEng.gf ShopsFin.gf ShopsFre.gf

2. Start the GF server. On a linux computer this can look as follows:

$ gf -server

...

Document root = /home/aarne/.cabal/share/gf-3.3.3/www

Starting HTTP server, open http://localhost:41296/

in your web browser.



3. Copy the PGF file from Step 1 to the grammars directory under the

server’s Document root:

$ cp -p Shops.pgf /home/aarne/.cabal/share/gf-3.3.3/www/grammars/

4. The translator can now be accessed in http://localhost:41296/



Linguistic knowledge from the RGL

Even these most trivial natural language grammars involve expert lin-

guistic knowledge.

Word inflection: French ouvert-ouverte

Gender agreement: French le bar est ouvert (“the bar is open”,

masculine) vs. la gare est ouverte (“the station is open”, feminine)

The grammar code ShopsFre.gf does not mention gender or agreement.

And it has no occurrences of the words la, le, ouverte!



Language differences and the RGL

Automatic in the grammar: renderings of common operations

• Example: the definite article the Def

– English: one form the
– French: several forms le, la, l’, les
– Finnish: no word at all

Decided by the grammarian: choices of operations

• Example: the predicates “open” and “closed”

– English and French: adjectives
– Finnish: adverbs



Questions for best practices

• When should I use GF rather than something else?

• What domains can the translations address?

• What applications and use cases are there?

• What languages have been dealt with?

• How much time does it take to build a translation system?



• What skills and training are needed?

• What alternative tools are there?



Indications for using GF

Aim at full precision

Maximally thousands of concepts

A high number of languages

Presence of morphologically complex languages

Availability of RGL



MOLTO applications

Phrasebook: touristic phrases

Math: mathematical concepts from OpenMath

Museum: museum object descriptions and queries, mostly from Db-

Pedia

ACE: Attempto Controlled English, based on predicate logic and OWL

Patent: legacy patent texts from the pharmaceutical domain



Languages used in MOLTO applications

Language Code Smart Dict MOLTO Phraseb Math Museum ACE Patent
Bulgarian Bul + + + + + +
Catalan Cat + + + + + +
Chinese Chi + +
Danish Dan + + + + +
Dutch Dut + + + + +
English Eng + + + + + + + +
Finnish Fin + + + + + + +
French Fre + + + + + + + +
German Ger + + + + + + + +
Greek Gre + +
Hebrew Heb +
Hindi Hin + + + +
Italian Ita + + + + + +
Latvian Lav + + +
Norwegian Nor + + + + +
Persian Pes +
Polish Pol + + + +
Romanian Ron + + + + + +
Russian Rus + + + + + + +
Spanish Spa + + + + + +
Swedish Swe + + + + + + +
Thai Tha + + +
Urdu Urd + + + +
total 23 19 8 15 20 13 15 21 3

RGL but no MOLTO applications: Afrikaans, Japanese, Maltese, Nepali, Punjabi, Sindhi



Development effort for the MOLTO Phrasebook

Language Fluency GF skills Inf. dev. Inf. testing Ext. tools RGL edits Effort
Bulgarian ### ### - - - # ##
Catalan ### ### - - - # #
Danish - ### + + + ## ##
Dutch - ### + + + # ##
English ## ### - + - - #
Finnish ### ### - - - # ##
French ## ### - + - # #
German # ### + + + ## ###
Italian ### # - - - ## ##
Norwegian # ### + + + # ##
Polish ### ### + + + # ##
Romanian ### ### - - + ### ###
Spanish ## # - - - - ##
Swedish ## ### - + - - ##

Fluency: ### = native. GF skills: # = two days’ tutorial. Effort: # = 1 working day



Alternative tools

Consumer applications

• Statistical Machine Translation (SMT)

• Apertium (rule-based open-domain shallow-transfer system)

Producer applications

• HPSG (Head-Driven Phrase Structure Grammar), Lingo Matrix

grammars, and LKP tool



• LFG (Lexical-Functional Grammar), ParGram grammars, and XLE

tool

• Regulus, a Prolog-based system specialized for spoken language

translators



The choice of tools

All available from http://grammaticalframework.org under open-source

licenses

http://grammaticalframework.org


The GF grammar compiler

The program invoked by the command gf in an OS shell.

It can be used in two ways,

• as a batch compiler for preparing end-user products

• as an interactive shell for testing grammars during development



GF IDE’s

(Integrated Development Environments)

• GF-Eclipse plug-in for desktop use

• GFSE, a cloud-based editor for GF grammars



Grammar diagnostic tools

• displaying grammar information

• statistics about a grammar

• ambiguity checking

• unit and regression testing



The GF Resource Grammar Library

Morphology, syntax, and lexicon for 28 languages.

Tools supporting the use of the library include

• the RGL API synopsis

• the RGL source code browser

• the RGL application expression editor



The GF run-time system

I.e. an interpreter for PGF binaries (Portable Grammar Format), which

are produced by the grammar compiler

• PGF interpreter in Haskell, integrated in the GF compiler shell

• PGF interpreter in Java, useful for Java applications such as An-

droid

• PGF interpreter in C, useful for large-volume and large-coverage

applications

• PGF interpreted in C++, designed for iPhone applications



GF web application interfaces

• a small-scale interactive translator with “fridge magnets”

• a large-scale translator with post-editing support

• s translation quiz application

• a JavaScript library usable for custom interfaces



GF mobile application libraries

• an Android library based on Java runtime

• an iPhone library based on C++ runtime



The GF grammar compiler

Current version 3.5 (August 2013)

Backward compatibility: grammars that have worked in old versions

should continue to work in newer ones

Bug tracking system:

• http://code.google.com/p/grammatical-framework/issues/list

GF is written in Haskell, but the binary distributions don’t require any

Haskell tools.

http://code.google.com/p/grammatical-framework/issues/list


Development environments

Text editor + GF shell

• GF modes are available for Emacs, Geany, and Gedit

The GF-Eclipse plug-in

• http://www.grammaticalframework.org/eclipse/index.html

The cloud-based IDE

• http://cloud.grammaticalframework.org/

http://www.grammaticalframework.org/eclipse/index.html
http://cloud.grammaticalframework.org/


Grammar diagnostic tools in the GF shell

Relevant commands with various options:

• i, import

• pg, print grammar

• ai, abstract information

• so, show opers

Below some examples.



Verbosity

import -v FILE

gives detailed information on the compilation phases.

• if the compilation takes a long time, you can see where it gets

stuck

• it shows the PGF target code size of each linearization rule.



Print words

print_grammar -words

shows the complete list of terminal tokens in the current PGF grammar.

print_grammar -words | ? wc -w

counts them.



Print BNF approximation and finite automaton

print_grammar -printer=bnf | ? wc -l

counts the number of BNF rules

print_grammar -printer=fa | write_file -file=autom.dot

builds a finite automaton approximating the grammar, in graphviz.



Print missing linearizations

print_grammar -missing

shows which functions have not been defined in different concrete

syntaxes.



Resource grammar tools



The structure of the resource grammar

The main API modules

• Syntax, syntactic categories and combination rules,

• Paradigms, morphological functions for lexicon building.

Additional API modules

• Symbolic, functions for mixing text with formulas,

• Irreg, a list of irregular words (mostly verbs) for some languages,



• Dict, a large-scale morphological dictionary for some languages

• Try, a combination of Syntax, Paradigms, and Lexicon, useful for

testing RGL function combinations in the GF shell, or in strictly

monolingual code.



A best practice

Importing modules below the API-layer implies a high risk of

breaking the program in the future, because the RGL internals

are not committed to backward-compatibility.



Writing a grammar



Steps

1. Create test corpus

2. Write abstract syntax

3. Write concrete syntax for one language

• choose linearization types

• write linearization rules

• test, test, test!



4. Port concrete syntax to another language

5. Consider a functor



Mapping to resource grammar categories

The most useful linearization types for application grammar categories

Text texts, punctuated sentences
Utt top-level utterances (if not top-level)
S declarative sentences with fixed tense and polarity
QS questions with fixed tense and polarity
Cl clauses (predications) with variable tense and polarity
CN common nouns: types, classes, kinds
NP noun phrases: names, subjects, objects
AP adjectival phrases: properties, qualities
Adv adverbs, prepositional phrases
Card cardinal numbers - either symbolic or verbal



Linearization types should work in all languages

Thus avoid lexical categories, such as N, A, V, because it very often

happens that e.g. a lexical noun (N) in one language has to be rendered

as a complex noun (CN) in another language.



Porting a grammar to a new language: first steps

Assume we are porting English (Eng) to German (Ger). Then do as
follows:

1. Copy the Eng files to corresponding Ger files.

2. Replace all references in the module header from Eng mod-
ules to Ger modules.

These steps are completely mechanical. With good luck, they may
result in a compilable German grammar, which can be tested in GF:

Ist der bar closed? Ist der shop open? Ist die station open?

Der bar ist closed. Der shop ist open. Die station ist open.



Porting a grammar: next step

3. Change the strings in the module from English to German
words.

The resulting sentences look more German:

Ist der Bar geschlossen? Ist der Geschäft geöffnet? Ist der
Bahnhof geöffnet?

Der Bar ist geschlossen. Der Geschäft ist geöffnet. Der Bahn-
hof ist geöffnet.

Almost everything is correct now—except the genders of the nouns.
Therefore:



Porting a grammar: concluding steps

4. Add more information to the lexical paradigm applications

if necessary.

The test suite now comes out completely correct:

Ist die Bar geschlossen? Ist das Geschäft geöffnet? Ist der

Bahnhof geöffnet?

Die Bar ist geschlossen. Das Geschäft ist geöffnet. Der Bahn-

hof ist geöffnet.

Sometimes one also needs:



6. Change the applications of Syntax API functions if needed.

7. Change linearization types if needed, and the affected con-

structors and linearization rules accordingly.



Using a functor

Advantages:

• Less source code is needed.

• Porting a grammar to a new languages needs just the minimum of

work.

• If the abstract syntax is changed, concrete syntax needs to be

changed in just one place.

Disadvantages:



• The concept of a functor is advanced and not previously known to

many programmers.

• Debugging functorized code can be hard due to its many levels.

• Compile-time transfer is more difficult than without functors.



Best practices: a summary

To make your work reusable, and to enable a division of labour:

• Divide the grammar into a base module (syntactic) and domain

extension (lexical).

To make it maximally simple to add languages:

• Consider defining the base part by a functor.

To avoid low-level hacking and guarantee grammatical correctness:



• In the concrete syntax, use only function applications and string

tokens, maybe records - but no tables, no concatenation.

To guarantee that the grammar will continue to work in the future:

• Only use the API level of the resource grammar library.

For scalability:

• Choose solutions that remain stable when new languages are added.

A corollary:

• Never use lexical categories as linearization types.



To monitor your progress:

• Create a treebank for unit and regression testing, and use it often

with the diagnostic tools.


