Machine Translation: Green, Yellow, and Red

Aarne Ranta

University of Gothenburg and Digital Grammars AB

Talk given at Hong Kong Polytechnic University

10 November 2014

REMU

digital (–

rammars

Versions also given at

CLT, U Gothenburg, April 2014 NLCS/NLSR, Vienna Summer of Logic, July 2014 CNL, Galway, August 2014 WoLLIC, Valparaiso, September 2014 Dept of Mathematics, U Stockholm, September 2014 Shanghai University of Finance and Economics, Nov 2014

Joint work with

Krasimir Angelov, Björn Bringert, Grégoire Détrez, Ramona Enache, Erik de Graaf, Thomas Hallgren, Qiao Haiyan, Prasanth Kolachina, Inari Listenmaa, Peter Ljunnglöf, K.V.S. Prasad, Scharolta Siencnik, Shafqat Virk

50+ GF Resource Grammar Library contributors

Executive summary

We want to have machine translation that

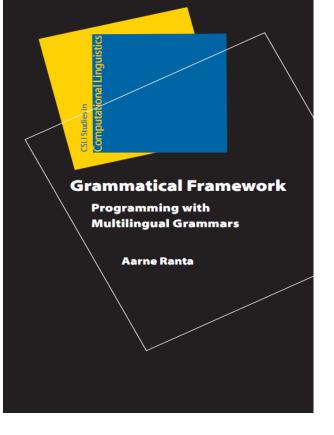
- delivers publication quality in areas where reasonable effort is invested
- degrades gracefully to browsing quality in other areas
- shows a clear distinction between these

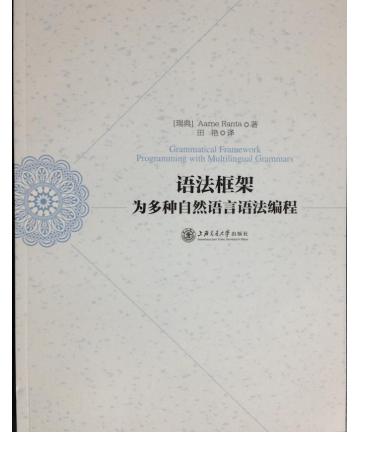
We do this by using grammars and type-theoretical interlinguas implemented in GF, Grammatical Framework

Executive summary

We want to have machine translation that

- delivers publication quality in areas where reasonable effort is invested
- degrades gracefully to browsing quality in other areas
- shows a clear distinction between these

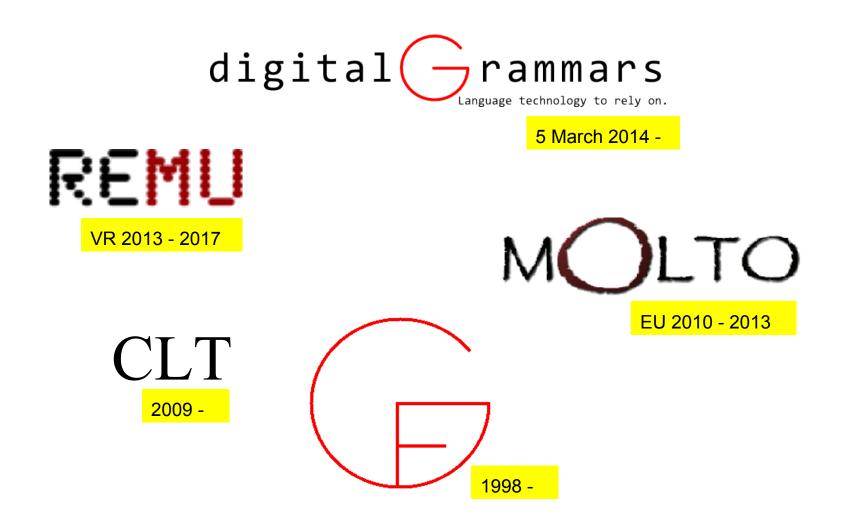

We do this by using **grammars** and **type-theoretical interlinguas** implemented in **GF**, **Grammatical Framework**


GF = Grammatical Framework

Grammar formalism based on **type theory** and **functional programming**.

Started at Xerox Research in 1998, as a tool for **highly multilingual, controlled language** translation.

Closest prior work: Montague grammar, Rosetta (Philips). Latest developments have scaled it up in **productivity** and also **coverage**.

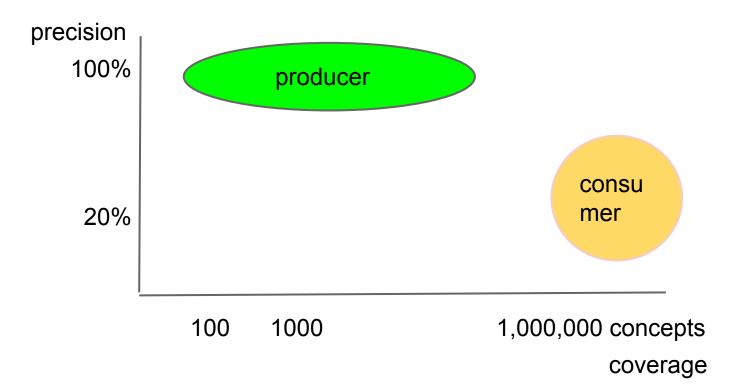


Shanghai Jiao Tong University press, 2014

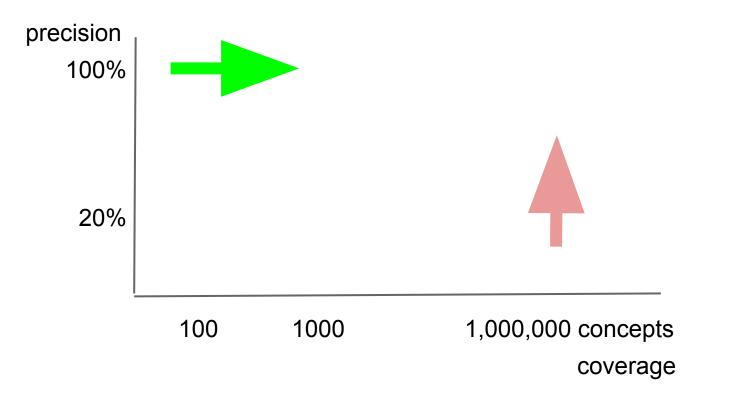
CSLI, Stanford, 2011

Translation: producer vs. consumer

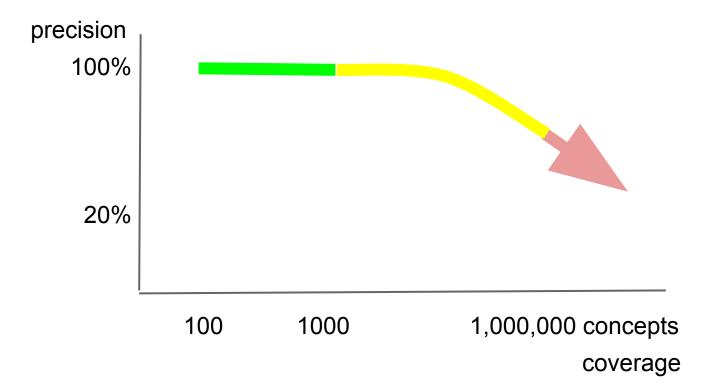
Consumer:


- must translate anything
- browsing quality enough

Producer:


- must translate my content
- publication quality required

MT mainstream is consumer tools


Orthogonal concepts

Two ways of developing a system

The best scenario?

An example

How far is the airport from the hotel? 从旅馆到机场有多远?

The vice dean kicked the bucket. 副院长踢了桶.

Little boy eat big snake. 小男孩吃大蛇.

An example

How far is the airport from the hotel?

The vice dean kicked the bucket.

Little boy eat big snake.

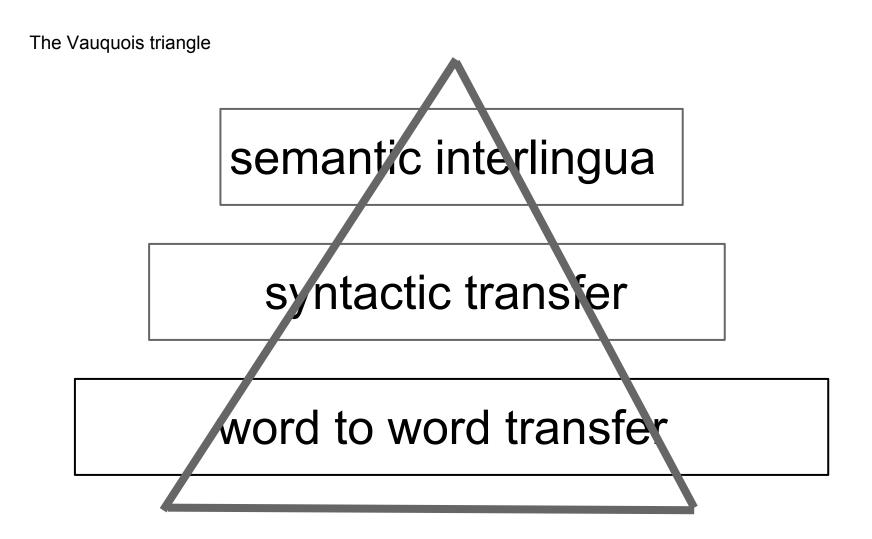
An example

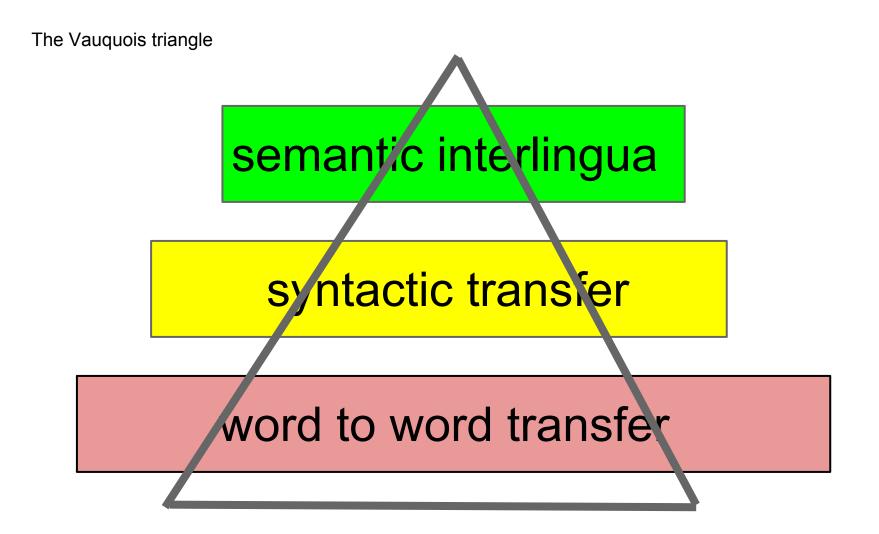
How far is the airport from the hotel?

从旅馆到机场有多远?

meaning

The vice dean kicked the bucket.




syntax

chunks

Little boy eat big snake.

What is it good for?

publish the content

get the grammar right

get an idea

Who is doing it?

GF in MOLTO

GF the last 18 months

Google, Bing, Apertium

What should we work on?

semantics for full quality and speed

syntax for grammaticality

chunks for robustness and speed

We want a system that

- can reach perfect quality
- has robustness as back-up
- tells the user which is which

We "combine GF, Apertium, and Google"

But we do it all in GF!

Problems with SMT

When things are far apart (n > 3)

Sparse data: a language has 10^6 "words"

Fundamentally random and uncontrolled

Hard to fix bugs

Long-distance dependencies

She is happy.Elle esShe is usually very happy.Elle es

Elle est heureuse. Elle est généralement très heureux.

(Google translate 9 November 2014)

Long-distance dependencies

I have five cats我有五**只猫**I have five very big cats我有五**个**非常大的**猫**

Er bringt dich um.

He is killing you.

Er **bringt** deinen besten Freund **um**.

He brings to your best friend.

A missing word doesn't cost much

Min far är svensk. Min far är inte svensk. 我的父亲是瑞典。 我的父亲是瑞典。

Predictability and controllability

Variation	English translation
lorem ipsum	China
ipsum lorem	the Internet
Lorem Ipsum	NATO
Ipsum Lorem	the Company
lorem lorem	China's Internet
Lorem lorem	Business on the Internet
Lorem Lorem	Home Business
ipsum ipsum	exam
Ipsum ipsum	it is
Ipsum Ipsum	the same

Google translate mid-2014, reported in

http://krebsonsecurity.com/2014/08/lorem-ipsum-of-good-evil-google-china/

What SMT is good for

Short, common expressions

- idiomacy
- local disambiguation

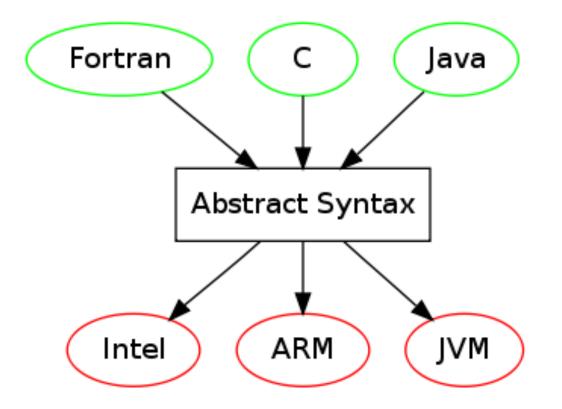
Acquiring data

• we can use this data in grammars

NB: Google translate is usually better than GF!

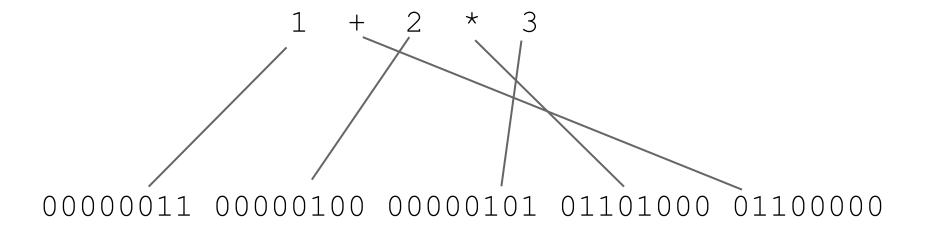
Acquiring data

can be *very* efficient. The Chinese transliteration of my name was created for the Chinese translation of the GF book by prof. Yan Tian, its translator. I could not find it on the web by Google search, but Google translate can have extracted from our gmail exchange or from a private copy of the manuscript in my Google docs. So this is what I got when I tried to use Google translate to find out what the transliteration means!


Google translate, October 2014

How to do it in GF?

a brief summary


Translation model: multi-source multi-target compiler

English Swedish Hindi German Chinese Abstract Syntax Finnish French Bulgarian Italian Spanish

Translation model: multi-source multi-target compiler-decompiler

Word alignment: compiler

Abstract syntax

Add : Exp -> Exp -> Exp Mul : Exp -> Exp -> Exp E1, E2, E3 : Exp

Add E1 (Mul E2 E3)

Concrete syntax

abstrakt Java Add x y X "+" V Mul x y X "*" V "1" E1 "?" *E*2 "~" *E*3

JVM

X Y "01100000" X Y "01101000" "00000011" "00000100" "00000101"

Compiling natural language

Abstract syntax

- Pred : NP -> V2 -> NP -> S
- *Mod : AP -> CN -> CN*
- Love : V2

Concrete syntax:	English	Latin
Pred s v o	SVO	SOV
Mod a n	a n	na
Love	"love"	"amare"

Word alignment

the clever woman loves the handsome man

femina sapiens virum formosum amat

Pred (Def (Mod Clever Woman)) Love (Def (Mod Handsome Man))

Linearization types

English

Latin

CN {s : Number => Str} {s : Number => Case => Str ; g : Gender}

AP {s : Str} {s : Gender => Number => Case => Str}

Mod ap cn

 ${s = ||n => ap.s ++ cn.s ! n}$ s = (n,c) = cn.s!n!c + ap.s!cn.g!n!c;g = cn.g

Abstract syntax trees

my name is John

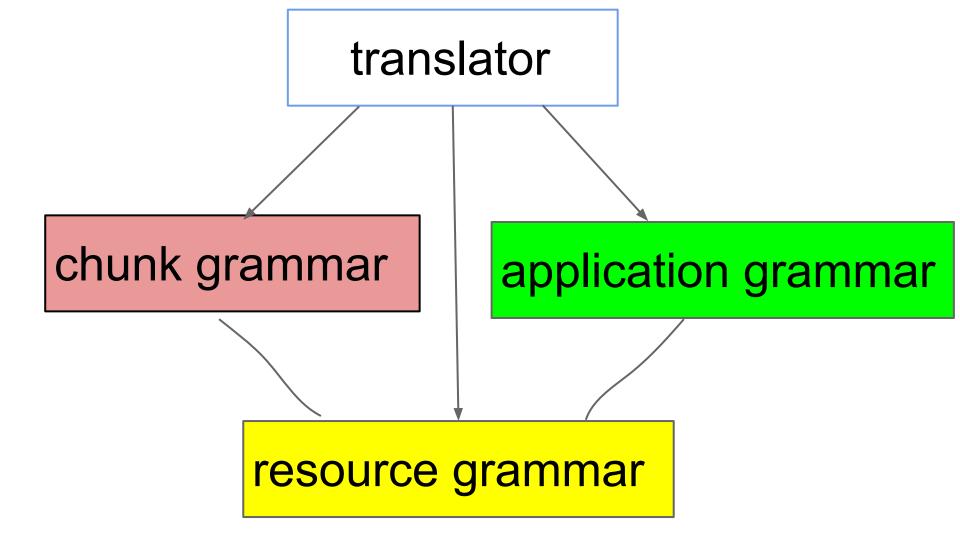
HasName I (Name "John")

Abstract syntax trees

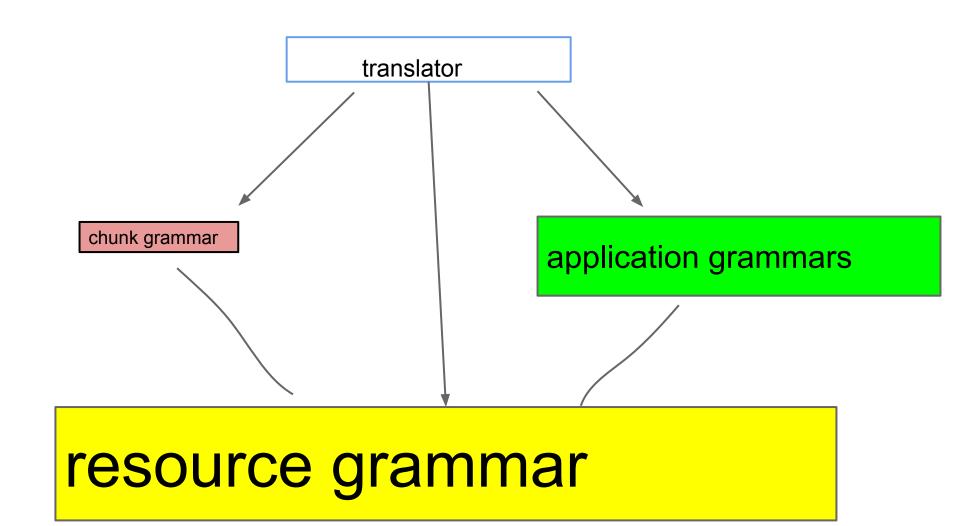
my name is John

HasName I (Name "John")

Pred (Det (Poss i_NP) name_N)) (NameNP "John")

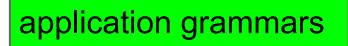

Abstract syntax trees

my name is John


HasName I (Name "John")

Pred (Det (Poss i_NP) name_N)) (NameNP "John")

[DetChunk (Poss i_NP), NChunk name_N, copulaChunk, NPChunk (NameNP "John")]



How much work is needed?

resource grammar

- morphology
- syntax
- generic lexicon
 precise linguistic knowledge
 manual work can't be escaped

domain semantics, domain idioms

- need domain expertise use resource grammar as library
- minimize hand-hacking

the work never ends

• we can only cover some domains

words suitable word sequences

- local agreement
- local reordering easily derived from resource grammar easily varied minimize hand-hacking

translator

PGF run-time system

- parsing
- linearization
- disambiguation generic for all grammars portable to different user interfaces
- web
- mobile

Disambiguation?

Grammatical: give priority to green over yellow, yellow over red

Statistical: use a distribution model for grammatical constructs (incl. word senses)

Interactive: for the last mile in the green zone

Advantages of GF

Expressivity: easy to express complex rules

- agreement
- word order
- discontinuity

Abstractions: easy to manage complex code Interlinguality: easy to add new languages

Resources: basic and bigger

Norwegian Danish Afrikaans

Maltese Romanian Polish Russian	English Swed French Ita Bulgarian Chinese	ish German Dutch lian Spanish Finnish Hindi	Catalan Estonian
Latvian Thai Japanese Urdu Punjabi S		Sindhi	
Greek	Nepali Persian		

Demos

Demo 1: MOLTO Phrasebook

Source: controlled language input

Based on **domain semantics**

http://www.grammaticalframework.org/demos/phrasebook/

Demo 2: resource grammar

Source: predictive input

Always yellow

Based on syntactic structure

http://cloud.grammaticalframework.org/minibar

Demo 3: wide-coverage translation

Source: any text

Can be green, yellow, or red.

Based on semantics, grammar, or chunks.

http://cloud.grammaticalframework.org/wc.html

Demo 4: mobile translation app

Source: text or speech in any language

Can be green, yellow, or red.

Based on semantics, grammar, or chunks.

https://play.google.com/store/apps/details?id=org.grammaticalframework.ui.android http://www.grammaticalframework.org/~aarne/App11.apk

How to do it?

some more details

Building the yellow part

Building a basic resource grammar

Programming skills

- Theoretical knowledge of language
- 3-6 months work
- 3000-5000 lines of GF code
- not easy to automate
- + only done once per language

Building a large lexicon

Monolingual (morphology + valencies)

- extraction from open sources (SALDO etc)
- extraction from text (*extract*)
- smart paradigms

Multilingual (mapping from abstract syntax)

- extraction from open sources (Wordnet, Wiktionary)
- extraction from parallel corpora (Giza++)

Manual quality control at some point needed

Improving the resources

Multiwords: non-compositional translation

- red wine vino tinto
- **Constructions**: multiwords with arguments
- x's name is y x se llama y
- Extraction from free resources (Konstruktikon)
- Extraction from SMT phrase tables
- example-based grammar writing

Building the green part

Define semantically based abstract syntax

fun HasName : Person -> Name -> Fact

Define concrete syntax by mapping to resource grammar structures

- lin HasName p n = mkCl (possNP p name_N) y
 my name is John
- lin HasName p n = mkCl p heissen_V2 y
 ich heisse John
- lin HasName p n = mkCl p (reflV chiamare_V) y
 (io) mi chiamo John

Resource grammars give crucial help

- application grammarians need not know linguistics
- a substantial grammar can be built in a few days
- adding a new language is a matter of a few hours

MOLTO's goal was to make this possible.

• EU project 2010-2013: Multilingual Online Translation

Automatic extraction of application grammars?

- abstract syntax from ontologies
- concrete syntax from examples
 - including phrase tables

As always, full green quality needs expert verification

- formal methods help (REMU project)
 - Reliable Multilingual Translation, Swedish Research Council project 2013-2017

These grammars are a source of

- "non-compositional" translations
- compile-time transfer
- idiomatic language
- translating meaning, not syntax

Constructions are the generalized form of this idea, originally domain-specific.

Building the red part

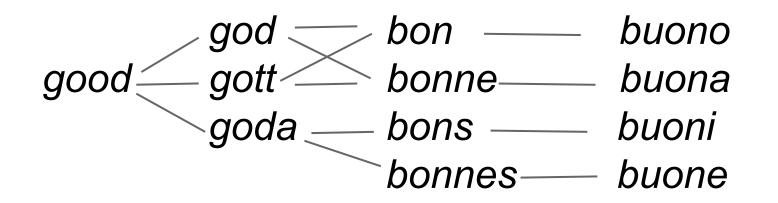
- 1. Write a grammar that builds sentences from sequences of chunks cat Chunk fun SChunks : [Chunk] -> S
- 2. Introduce chunks to cover phrases

fun NP_nom_Chunk : NP -> Chunk
fun NP_acc_Chunk : NP -> Chunk
fun AP_sg_masc_Chunk : AP -> Chunk
fun AP_pl_fem_Chunk : AP -> Chunk

Do this for all categories and feature combinations you want to cover.

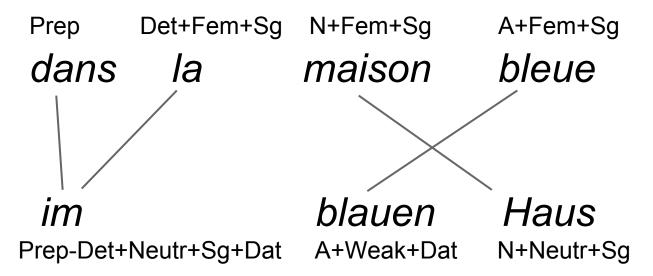
Include both long and short phrases

- long phrases have better quality
- short phrases add to robustness


Give long phrases priority by probability settings.

Long chunks are better:

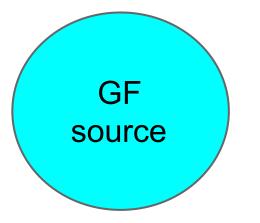
- [this yellow house] [det här gula huset]
- [this] [yellow house] [den här] [gult hus]
- [this] [yellow] [house] [den här] [gul] [hus]

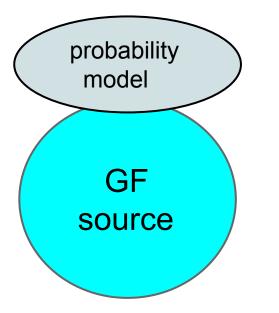

Limiting case: whole sentences as chunks.

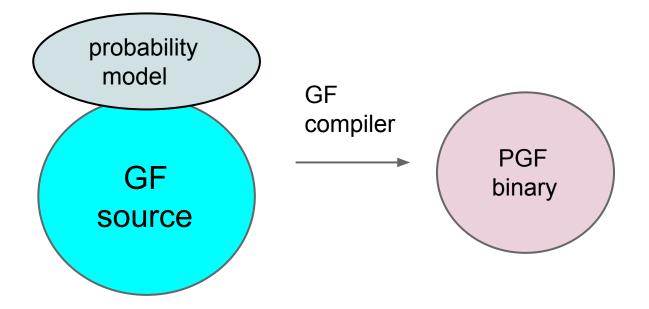
Accurate feature distinctions are good, especially between closely related language pairs.

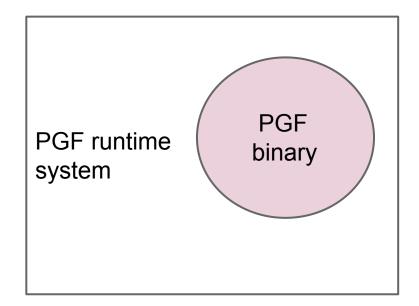
Apertium does this for every language pair.

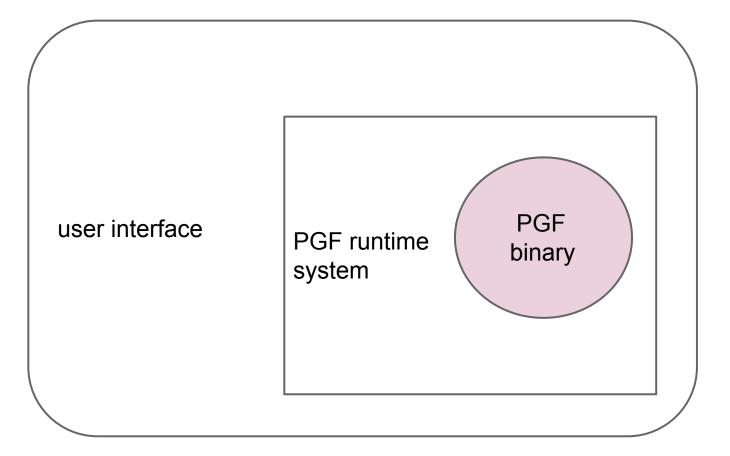
Resource grammar chunks of course come with reordering and internal agreement

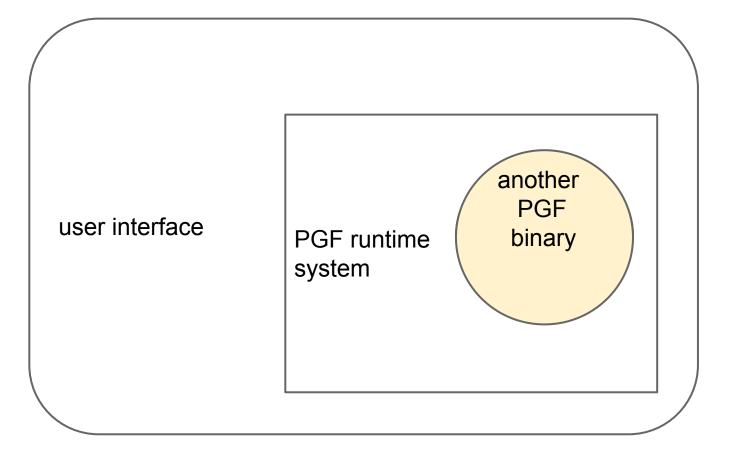

Recall: chunks are just a by-product of the real grammar.

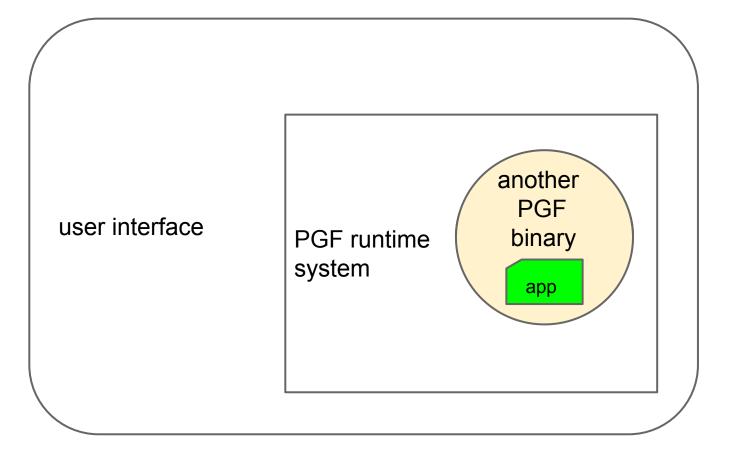

Their size span is

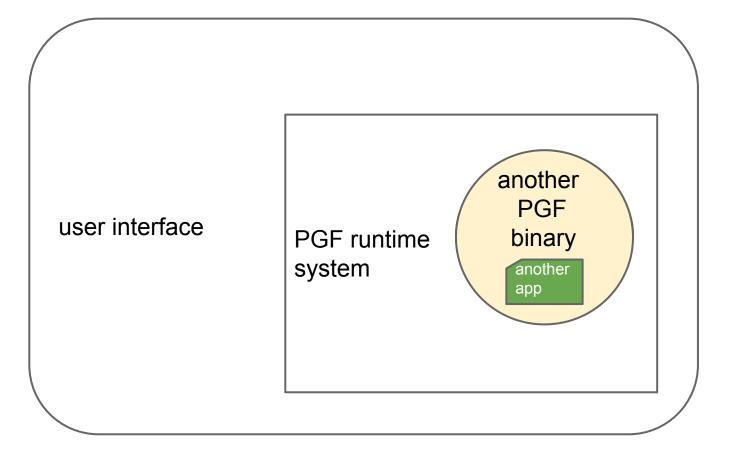

single words <---> entire sentences

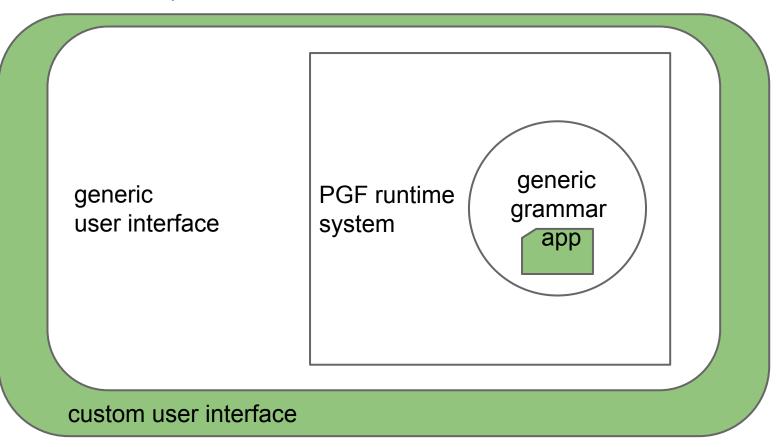

A wide-coverage chunking grammar can be built in a couple of hours **by using the RGL**.


Building the translation system









White: free, open-source. Green: a business idea

User interfaces

- command-line
- shell
- web server
- web applications mobile applications

Agenda for future work

Improve the lexicon

Split senses

Improve disambiguation

Introduce constructions

Design and perform evaluation

Current dictionary coverage

Bulgarian	36666	21372
Chinese	35000	16475
Dutch	17000	2154
English	66000	66000
Finnish	57000	4700
French	20000	1155
German	22000	1693
Hindi	34000	175
Italian	16000	641
Spanish	21000	2285
Swedish	25000	2259
	total words	checked words

time

time_N

time_V

Zeit

time_N

Mal

time_1_N

time_2_N Mal

Zeit

time_2_N Mal fois

weather_N Wetter

time_1_N Zeit temps

time_2_N Mal fois

Disambiguation

Current model, for abstract trees:

$$P(C t_1 \dots t_n) = P(C) * P(t_1) * \dots * P(t_n)$$

where P(C) for each tree constructor C is estimated from its frequency in a corpus.

The context-free tree model

Surprisingly good for syntactic constructors

But almost useless for word senses

This time we will have more time.

Alternative models

Run-time (in "decoding"): verb + arguments "n-grams" (on tree level)

Compile-time (in grammars): include constructions and multiwords in lexicon

See also: 4th GF Summer School

July 2015 in Marsalforn, Malta