
Machine Translation:
, , , and

Aarne Ranta
University of Gothenburg and Digital Grammars AB

Talk given at Hong Kong Polytechnic University

10 November 2014

RedYellowGreen

CLT

Versions also given at
CLT, U Gothenburg, April 2014
NLCS/NLSR, Vienna Summer of Logic, July 2014
CNL, Galway, August 2014
WoLLIC, Valparaiso, September 2014
Dept of Mathematics, U Stockholm, September 2014
Shanghai University of Finance and Economics, Nov 2014

Joint work with

Krasimir Angelov, Björn Bringert, Grégoire
Détrez, Ramona Enache, Erik de Graaf, Thomas
Hallgren, Qiao Haiyan, Prasanth Kolachina, Inari
Listenmaa, Peter Ljunnglöf, K.V.S. Prasad,
Scharolta Siencnik, Shafqat Virk

50+ GF Resource Grammar Library contributors

Executive summary
We want to have machine translation that
● delivers publication quality in areas where reasonable

effort is invested
● degrades gracefully to browsing quality in other areas
● shows a clear distinction between these

We do this by using grammars and type-theoretical
interlinguas implemented in GF, Grammatical
Framework

Executive summary
We want to have machine translation that
● delivers publication quality in areas where reasonable

effort is invested
● degrades gracefully to browsing quality in other areas
● shows a clear distinction between these

We do this by using grammars and type-theoretical
interlinguas implemented in GF, Grammatical
Framework

GF = Grammatical Framework
Grammar formalism based on type theory and functional
programming.
Started at Xerox Research in 1998, as a tool for highly
multilingual, controlled language translation.
Closest prior work: Montague grammar, Rosetta (Philips).
Latest developments have scaled it up in productivity and
also coverage.

CSLI, Stanford, 2011 Shanghai Jiao Tong University press, 2014

VR 2013 - 2017

EU 2010 - 2013

1998 -

5 March 2014 -

CLT
2009 -

Translation: producer vs. consumer
Consumer:
● must translate anything
● browsing quality enough
Producer:
● must translate my content
● publication quality required
MT mainstream is consumer tools

Orthogonal concepts
 precision
 100%

 20%

 100 1000 1,000,000 concepts
 coverage

 producer

consu
mer

Two ways of developing a system
 precision
 100%

 20%

 100 1000 1,000,000 concepts
 coverage

The best scenario?
 precision
 100%

 20%

 100 1000 1,000,000 concepts
 coverage

An example
How far is the airport from the hotel?

从 旅 馆 到 机 场 有 多 远?

The vice dean kicked the bucket.

副 院 长 踢 了 桶.

Little boy eat big snake.

小 男 孩 吃 大 蛇.

An example
How far is the airport from the hotel?

从 旅 馆 到 机 场 有 多 远?

The vice dean kicked the bucket.

副 院 长 踢 了 桶.

Little boy eat big snake.

小 男 孩 吃 大 蛇.

An example
How far is the airport from the hotel?

从 旅 馆 到 机 场 有 多 远? meaning

The vice dean kicked the bucket.

副 院 长 踢 了 桶. syntax

Little boy eat big snake.

小 男 孩 吃 大 蛇. chunks

 word to word transfer

 syntactic transfer

semantic interlingua

The Vauquois triangle

 word to word transfer

 syntactic transfer

semantic interlingua

The Vauquois triangle

What is it good for?

 get an idea

 get the grammar right

 publish the content

Who is doing it?

 Google, Bing, Apertium

 GF the last 18 months

 GF in MOLTO

What should we work on?

chunks for robustness and speed

 syntax for grammaticality

 semantics for full quality and speed

All!

We want a system that
● can reach perfect quality
● has robustness as back-up
● tells the user which is which

We “combine GF, Apertium, and Google”

But we do it all in GF!

Problems with SMT

When things are far apart (n > 3)

Sparse data: a language has 10^6 “words”

Fundamentally random and uncontrolled

Hard to fix bugs

Long-distance dependencies

She is happy. Elle est heureuse.

She is usually very happy. Elle est généralement très

 heureux.

(Google translate 9 November 2014)

Long-distance dependencies

I have five cats 我有五只猫

I have five very big cats 我有五个非常大的猫

Er bringt dich um. He is killing you.

Er bringt deinen besten He brings to your
Freund um. best friend.

A missing word doesn’t cost much
Min far är svensk. 我的父亲是瑞典。
Min far är inte svensk. 我的父亲是瑞典。

Predictability and controllability

Google translate mid-2014, reported in
http://krebsonsecurity.com/2014/08/lorem-ipsum-of-good-evil-google-china/

http://krebsonsecurity.com/2014/08/lorem-ipsum-of-good-evil-google-china/
http://krebsonsecurity.com/2014/08/lorem-ipsum-of-good-evil-google-china/

What SMT is good for

Short, common expressions
● idiomacy
● local disambiguation
Acquiring data
● we can use this data in grammars

NB: Google translate is usually better than GF!

Acquiring data
can be very efficient. The Chinese
transliteration of my name was created for the
Chinese translation of the GF book by prof.
Yan Tian, its translator. I could not find it on
the web by Google search, but Google
translate can have extracted from our gmail
exchange or from a private copy of the
manuscript in my Google docs. So this is what
I got when I tried to use Google translate to
find out what the transliteration means!

Google translate,
October 2014

How to do it in GF?

 a brief summary

Translation model: multi-source multi-target compiler

Translation model: multi-source multi-target compiler-decompiler

Abstract Syntax

 Hindi

Chinese

Finnish

Swedish

English

Spanish

German

French

Bulgarian Italian

Word alignment: compiler

 1 + 2 * 3

00000011 00000100 00000101 01101000 01100000

Abstract syntax

Add : Exp -> Exp -> Exp
Mul : Exp -> Exp -> Exp
E1, E2, E3 : Exp

Add E1 (Mul E2 E3)

Concrete syntax

abstrakt Java JVM
Add x y x “+” y x y “01100000”
Mul x y x “*” y x y “01101000”
E1 “1” “00000011”
E2 “2” “00000100”
E3 “3” “00000101”

Compiling natural language
Abstract syntax
 Pred : NP -> V2 -> NP -> S
 Mod : AP -> CN -> CN
 Love : V2
Concrete syntax: English Latin
 Pred s v o s v o s o v
 Mod a n a n n a
 Love “love” “amare”

Word alignment

the clever woman loves the handsome man

femina sapiens virum formosum amat

Pred (Def (Mod Clever Woman)) Love
 (Def (Mod Handsome Man))

Linearization types
 English Latin
 CN {s : Number => Str} {s : Number => Case => Str ; g : Gender}
 AP {s : Str} {s : Gender => Number => Case => Str}

 Mod ap cn
 {s = \\n => ap.s ++ cn.s ! n} {s = \\n,c => cn.s ! n ! c ++ ap.s ! cn.g ! n ! c ;
 g = cn.g
 }

Abstract syntax trees
my name is John

HasName I (Name “John”)

Abstract syntax trees
my name is John

HasName I (Name “John”)

Pred (Det (Poss i_NP) name_N)) (NameNP “John”)

Abstract syntax trees
my name is John

HasName I (Name “John”)

Pred (Det (Poss i_NP) name_N)) (NameNP “John”)

[DetChunk (Poss i_NP), NChunk name_N, copulaChunk,
NPChunk (NameNP “John”)]

 translator

chunk grammar

resource grammar

application grammar

How much work is needed?

 translator

chunk grammar

resource grammar

application grammars

 resource grammar

● morphology
● syntax
● generic lexicon
precise linguistic knowledge
manual work can’t be escaped

application grammars

domain semantics, domain idioms
● need domain expertise
use resource grammar as library
● minimize hand-hacking

the work never ends
● we can only cover some domains

chunk grammar

words
suitable word sequences
● local agreement
● local reordering
easily derived from resource grammar
easily varied
minimize hand-hacking

 translator
PGF run-time system
● parsing
● linearization
● disambiguation
generic for all grammars
portable to different user interfaces
● web
● mobile

Disambiguation?
Grammatical: give priority to green over
yellow, yellow over red

Statistical: use a distribution model for
grammatical constructs (incl. word senses)

Interactive: for the last mile in the green zone

Advantages of GF

Expressivity: easy to express complex rules
● agreement
● word order
● discontinuity
Abstractions: easy to manage complex code
Interlinguality: easy to add new languages

Resources: basic and bigger

 Norwegian Danish Afrikaans

Maltese

Romanian Catalan

 Polish Estonian

Russian

 Latvian Thai Japanese Urdu Punjabi Sindhi

 Greek Nepali Persian

English Swedish German Dutch

French Italian Spanish

 Bulgarian Finnish

 Chinese Hindi

Demos

Demo 1: MOLTO Phrasebook

Source: controlled language input

Always green

Based on domain semantics

http://www.grammaticalframework.org/demos/phrasebook/

http://www.grammaticalframework.org/demos/phrasebook/
http://www.grammaticalframework.org/demos/phrasebook/

Demo 2: resource grammar

Source: predictive input

Always yellow

Based on syntactic structure

http://cloud.grammaticalframework.org/minibar

http://cloud.grammaticalframework.org/minibar
http://cloud.grammaticalframework.org/minibar

Demo 3: wide-coverage translation

Source: any text

Can be green, yellow, or red.

Based on semantics, grammar, or chunks.

http://cloud.grammaticalframework.org/wc.html

http://cloud.grammaticalframework.org/wc.html
http://cloud.grammaticalframework.org/wc.html

Demo 4: mobile translation app

Source: text or speech in any language

Can be green, yellow, or red.

Based on semantics, grammar, or chunks.
https://play.google.com/store/apps/details?id=org.grammaticalframework.ui.android
http://www.grammaticalframework.org/~aarne/App11.apk

https://play.google.com/store/apps/details?id=org.grammaticalframework.ui.android
https://play.google.com/store/apps/details?id=org.grammaticalframework.ui.android
http://www.grammaticalframework.org/~aarne/App11.apk
http://www.grammaticalframework.org/~aarne/App11.apk

How to do it?

 some more details

Building the yellow part

Building a basic resource grammar

Programming skills
Theoretical knowledge of language
3-6 months work
3000-5000 lines of GF code
- not easy to automate
+ only done once per language

Building a large lexicon
Monolingual (morphology + valencies)
● extraction from open sources (SALDO etc)
● extraction from text (extract)
● smart paradigms
Multilingual (mapping from abstract syntax)
● extraction from open sources (Wordnet, Wiktionary)
● extraction from parallel corpora (Giza++)

Manual quality control at some point needed

Improving the resources
Multiwords: non-compositional translation
● red wine - vino tinto
Constructions: multiwords with arguments
● x’s name is y - x se llama y
Extraction from free resources (Konstruktikon)
Extraction from SMT phrase tables
● example-based grammar writing

Building the green part

Define semantically based abstract syntax
 fun HasName : Person -> Name -> Fact

Define concrete syntax by mapping to resource
grammar structures
 lin HasName p n = mkCl (possNP p name_N) y
 my name is John
 lin HasName p n = mkCl p heissen_V2 y
 ich heisse John
 lin HasName p n = mkCl p (reflV chiamare_V) y
 (io) mi chiamo John

Resource grammars give crucial help
● application grammarians need not know

linguistics
● a substantial grammar can be built in a few

days
● adding a new language is a matter of a few

hours

MOLTO’s goal was to make this possible.
● EU project 2010-2013: Multilingual Online Translation

Automatic extraction of application grammars?
● abstract syntax from ontologies
● concrete syntax from examples

○ including phrase tables

As always, full green quality needs expert
verification
● formal methods help (REMU project)

○ Reliable Multilingual Translation, Swedish Research Council project
2013-2017

These grammars are a source of
● “non-compositional” translations
● compile-time transfer
● idiomatic language
● translating meaning, not syntax

Constructions are the generalized form of this
idea, originally domain-specific.

Building the red part

1. Write a grammar that builds sentences
from sequences of chunks
 cat Chunk
 fun SChunks : [Chunk] -> S

2. Introduce chunks to cover phrases

 fun NP_nom_Chunk : NP -> Chunk
 fun NP_acc_Chunk : NP -> Chunk
 fun AP_sg_masc_Chunk : AP -> Chunk
 fun AP_pl_fem_Chunk : AP -> Chunk

Do this for all categories and feature
combinations you want to cover.

Include both long and short phrases
● long phrases have better quality
● short phrases add to robustness

Give long phrases priority by probability
settings.

Long chunks are better:

 [this yellow house] - [det här gula huset]

 [this] [yellow house] - [den här] [gult hus]

 [this] [yellow] [house] - [den här] [gul] [hus]

Limiting case: whole sentences as chunks.

Accurate feature distinctions are good,
especially between closely related language
pairs.

 god bon buono
 good gott bonne buona
 goda bons buoni
 bonnes buone

Apertium does this for every language pair.

Resource grammar chunks of course come
with reordering and internal agreement
 Prep Det+Fem+Sg N+Fem+Sg A+Fem+Sg
 dans la maison bleue

 im blauen Haus
 Prep-Det+Neutr+Sg+Dat A+Weak+Dat N+Neutr+Sg

Recall: chunks are just a by-product of the
real grammar.

Their size span is

 single words <---> entire sentences

A wide-coverage chunking grammar can be
built in a couple of hours by using the
RGL.

 Building the
 translation system

 GF
 source

 GF
 source

 probability
 model

 GF
 source

 probability
 model

 PGF
 binary

GF
compiler

 PGF
 binaryPGF runtime

system

 PGF
 binaryPGF runtime

system

user interface

 PGF
 binaryPGF runtime

system

user interface

 another
 PGF
 binary

 PGF
 binaryPGF runtime

system

user interface

 another
 PGF
 binary

 app

 PGF
 binaryPGF runtime

system

user interface

 another
 PGF
 binary

another
app

 PGF
 binaryPGF runtime

system

 custom user interface

generic
user interface

PGF runtime
system

 generic
 grammar

 app

White: free, open-source. Green: a business idea

User interfaces

command-line
shell
web server
web applications
mobile applications

 Agenda for future work

Improve the lexicon

Split senses

Improve disambiguation

Introduce constructions

Design and perform evaluation

Current dictionary coverage
 35000

Splitting senses

time

Splitting senses

time_N

time_V

Splitting senses

 Zeit
time_N
 Mal

Splitting senses

time_1_N Zeit

time_2_N Mal

Splitting senses

time_1_N Zeit temps

time_2_N Mal fois

Splitting senses
weather_N Wetter

time_1_N Zeit temps

time_2_N Mal fois

Disambiguation

Current model, for abstract trees:

 P(C t1 … tn) = P(C) * P(t1) * …* P(tn)

where P(C) for each tree constructor C is
estimated from its frequency in a corpus.

The context-free tree model

Surprisingly good for syntactic constructors

But almost useless for word senses

 This time we will have more time.

Alternative models

Run-time (in “decoding”):
verb + arguments “n-grams” (on tree level)

Compile-time (in grammars):
include constructions and multiwords in lexicon

See also: 4th GF Summer School

July 2015 in Marsalforn, Malta

