Syntax and Semantics of Translation

Aarne Ranta

WoLLIC 2014, Valparaiso, 1-4 September

Machine Translation: Green, Yellow, and Red

Aarne Ranta

WoLLIC-2014, Valparaiso 4 September 2014

REMU

digital (- rammars

CLT

Versions also given at

CLT, Gothenburg, April 2014

NLCS/NLSR, Vienna Summer of Logic, July 2014

CNL, Galway, August 2014

Executive summary

We want to have machine translation that

- delivers publication quality in areas where reasonable effort is invested
- degrades gracefully to browsing quality in other areas
- shows a clear distinction between these

We do this by using grammars and type-theoretical interlinguas implemented in GF, Grammatical Framework

Executive summary

We want to have machine translation that

- delivers publication quality in areas where reasonable effort is invested
- degrades gracefully to browsing quality in other areas
- shows a clear distinction between these

We do this by using **grammars** and **type-theoretical interlinguas** implemented in **GF**, **Grammatical Framework**

Joint work with

Krasimir Angelov, Björn Bringert, Grégoire Détrez, Ramona Enache, Erik de Graaf, Thomas Hallgren, Qiao Haiyan, Prasanth Kolachina, Inari Listenmaa, Peter Ljunnglöf, K.V.S. Prasad, Scharolta Siencnik, Shafqat Virk

50+ GF Resource Grammar Library contributors

what is your name

como te llamas

the vice chancellor ordered red wine

el canciller de vicio ordenaba vino rojo

he don't care

él no cuidado

GF translation app in greyscale

what is your name

como te llamas

the vice chancellor ordered red wine

el canciller de vicio ordenaba vino rojo

he don't care

él no cuidado

GF translation app in full colour

what is your name

como te llamas

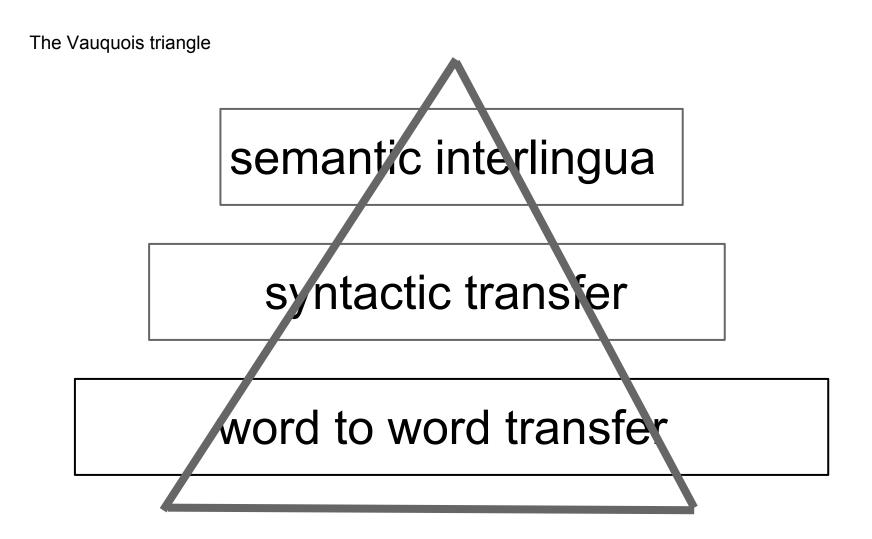
the vice chancellor ordered red wine

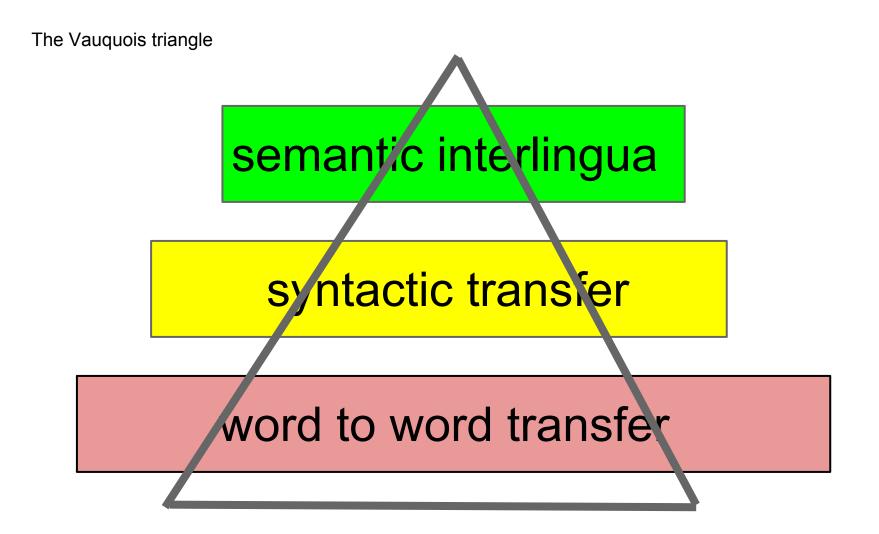
el canciller de vicio ordenaba vino rojo

he don't care

él no cuidado

translation by meaning


- correct
- idiomatic


translation by **syntax**

- grammatical
- often strange
- often wrong

translation by **chunks**

- probably ungrammatical
- probably wrong

What is it good for?

publish the content

get the grammar right

get an idea

Who is doing it?

GF in MOLTO

GF the last 15 months

Google, Bing, Apertium

What should we work on?

semantics for full quality and speed

syntax for grammaticality

chunks for robustness and speed

We want a system that

- can reach perfect quality
- has robustness as back-up
- tells the user which is which

We "combine GF, Apertium, and Google"

But we do it all in GF!

The idea is to understand real problems that one would like to solve, and to do it with the standards of the highest quality research. This combines the best features of "applied research" and "basic research." I've always found it productive to look at the details of real problems. Real problems often reveal issues that you wouldn't think of otherwise.

> William A. Woods, ACL Lifetime Achievement Award The Right Tools: Reflections on Computation and Language *Computational Linguistics* 36(4), 2010.

Interlude: SMT

How SMT works

SMT = Statistical Machine Translation

"Lexicon": word alignments

"Syntax": n-grams

Word order: distortion model

Word alignments 0.7 wine vino 0.4 rojo roja 0.2 red rojos 0.2 rojas 0.1 tinto 0.001 tintos 0.0002 blac

n-grams (n = 2)

libro rojo 0.01 roja 0.0001 casa roja 0.01 rojos 0.00001 0.001 vino rojo roja 0.00001 tinto 0.2

Decoding

Selecting the best translation from f to e

$\hat{e} = \operatorname{argmax} p(f|e) p(e)$ e

Shannon's noisy channel model (1948)

Decoding in action: word alignments

red rojo roja rojos rojas tinto wine vino

Decoding in action: distortion

wine red rojo red roja rojos rojas tinto

Decoding in action: n-grams

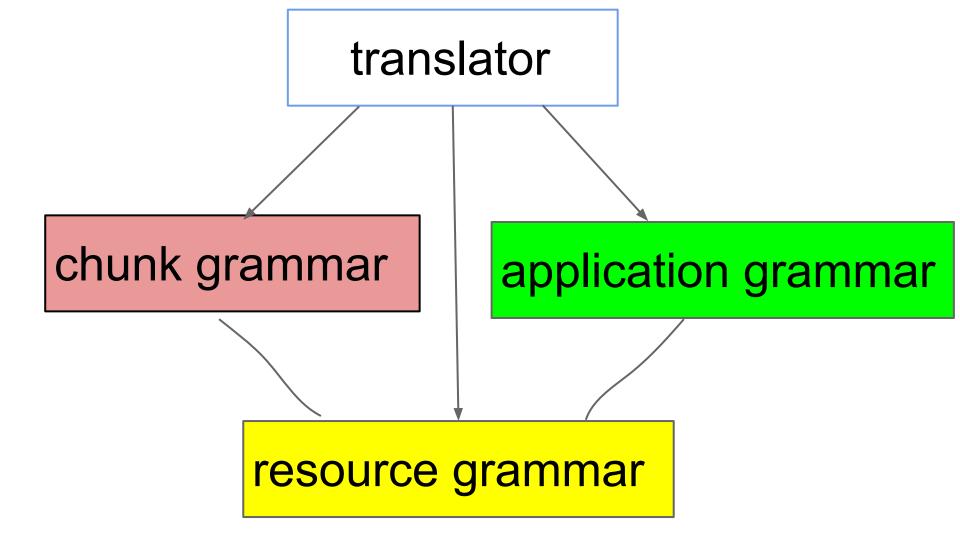
wine vino red rojo roja rojos rojas tinto

Modern version: phrase alignment

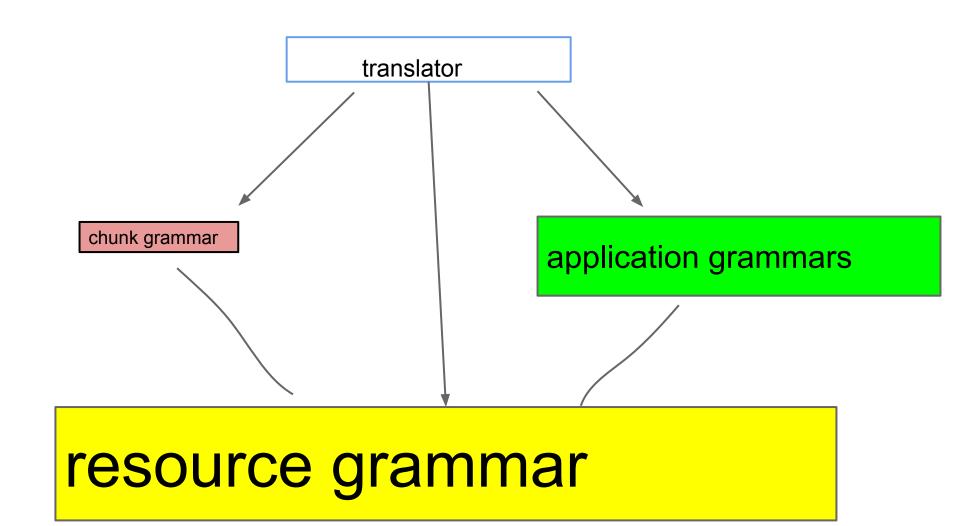
red wine vino tinto 0.99 vino rojo 0.01

Problems with SMT

When things are far apart (n > 3)


Sparse data: a language has 10^6 "words"

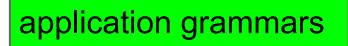
Fundamentally random and uncontrolled


Hard to fix bugs

How to do it in GF?

a brief summary

How much work is needed?



resource grammar

- morphology
- syntax
- generic lexicon
 precise linguistic knowledge
 manual work can't be escaped

words suitable word sequences

- local agreement
- local reordering easily derived from resource grammar easily varied minimize hand-hacking

domain semantics, domain idioms

- need domain expertise use resource grammar as library
- minimize hand-hacking

the work never ends

• we can only cover some domains

translator

PGF run-time system

- parsing
- linearization
- disambiguation generic for all grammars portable to different user interfaces
- web
- mobile

Disambiguation?

Grammatical: give priority to green over yellow, yellow over red

Statistical: use a distribution model for grammatical constructs (incl. word senses)

Interactive: for the last mile in the green zone

Advantages of GF

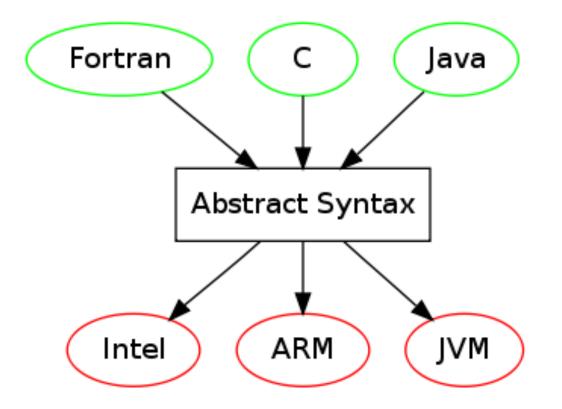
Expressivity: easy to express complex rules

- agreement
- word order
- discontinuity

Abstractions: easy to manage complex code Interlinguality: easy to add new languages

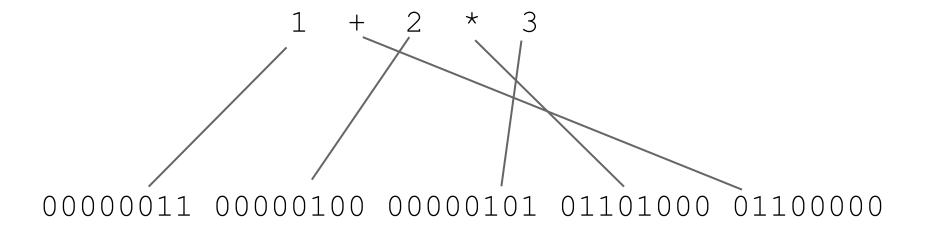
Resources: basic and bigger

Norwegian Danish Afrikaans


Maltese Romanian Polish Russian	English Swed French Ita Bulgarian Chinese	ish German Dutch lian Spanish Finnish Hindi	Catalan Estonian	
Latvian Thai Japanese		Urdu Punjabi	Urdu Punjabi Sindhi	
Greek		Nepali Pers	sian	

How to do it?

some more details


Translation model: multi-source multi-target compiler

English Swedish Hindi German Chinese Abstract Syntax Finnish French Bulgarian Italian Spanish

Translation model: multi-source multi-target compiler-decompiler

Word alignment: compiler

Abstract syntax

Add : Exp -> Exp -> Exp Mul : Exp -> Exp -> Exp E1, E2, E3 : Exp

Add E1 (Mul E2 E3)

Concrete syntax

abstrakt Java Add x y X "+" V Mul x y X "*" V "1" E1 "?" *E*2 "~" *E*3

JVM

X Y "01100000" X Y "01101000" "00000011" "00000100" "00000101"

Compiling natural language

Abstract syntax

- Pred : NP -> V2 -> NP -> S
- *Mod : AP -> CN -> CN*
- Love : V2

Concrete syntax:	English	Latin
Pred s v o	SVO	SOV
Mod a n	a n	na
Love	"love"	"amare"

Word alignment

the clever woman loves the handsome man

femina sapiens virum formosum amat

Pred (Def (Mod Clever Woman)) Love (Def (Mod Handsome Man))

Linearization types

English Latin

CN {s : Number => Str} {s : Number => Case => Str ; g : Gender}

AP {s : Str} {s : Gender => Number => Case => Str}

Mod ap cn

$$\{s = \n = ap.s ++ cn.s ! n\} \quad \{s = \n,c => cn.s ! n ! c ++ ap.s ! cn.g ! n ! c ; g = cn.g \\ \}$$

Abstract syntax trees

my name is John

HasName I (Name "John")

Abstract syntax trees

my name is John

HasName I (Name "John")

Pred (Det (Poss i_NP) name_N)) (NameNP "John")

Abstract syntax trees

my name is John

HasName I (Name "John")

Pred (Det (Poss i_NP) name_N)) (NameNP "John")

[DetChunk (Poss i_NP), NChunk name_N, copulaChunk, NPChunk (NameNP "John")]

Building the yellow part

Building a basic resource grammar

Programming skills

- Theoretical knowledge of language
- 3-6 months work
- 3000-5000 lines of GF code
- not easy to automate
- + only done once per language

Building a large lexicon

Monolingual (morphology + valencies)

- extraction from open sources (SALDO etc)
- extraction from text (*extract*)
- smart paradigms

Multilingual (mapping from abstract syntax)

- extraction from open sources (Wordnet, Wiktionary)
- extraction from parallel corpora (Giza++)

Manual quality control at some point needed

Improving the resources

Multiwords: non-compositional translation

- red wine vino tinto
- **Constructions**: multiwords with arguments
- x's name is y x se llama y
- Extraction from free resources (Konstruktikon)
- Extraction from SMT phrase tables
- example-based grammar writing

It's important to look at the details. Try to understand what would be necessary to solve the whole problem. At this point, don't settle for approximations.

Woods, ibid.

Building the red part

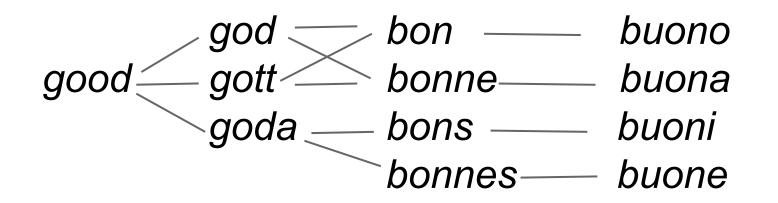
- 1. Write a grammar that builds sentences from sequences of chunks cat Chunk fun SChunks : [Chunk] -> S
- 2. Introduce chunks to cover phrases

fun NP_nom_Chunk : NP -> Chunk
fun NP_acc_Chunk : NP -> Chunk
fun AP_sg_masc_Chunk : AP -> Chunk
fun AP_pl_fem_Chunk : AP -> Chunk

Do this for all categories and feature combinations you want to cover.

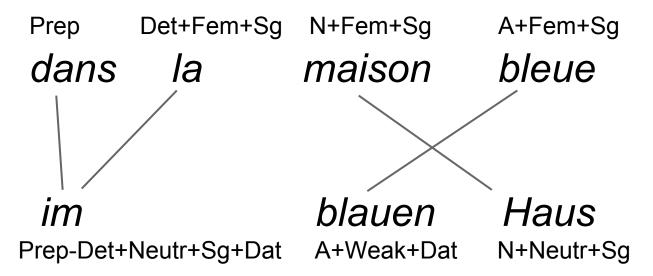
Include both long and short phrases

- long phrases have better quality
- short phrases add to robustness


Give long phrases priority by probability settings.

Long chunks are better:

- [this yellow house] [det här gula huset]
- [this] [yellow house] [den här] [gult hus]
- [this] [yellow] [house] [den här] [gul] [hus]


Limiting case: whole sentences as chunks.

Accurate feature distinctions are good, especially between closely related language pairs.

Apertium does this for every language pair.

Resource grammar chunks of course come with reordering and internal agreement

Recall: chunks are just a by-product of the real grammar.

Their size span is

single words <---> entire sentences

A wide-coverage chunking grammar can be built in a couple of hours **by using the RGL**.

If you have a practical job to do, and it's important to get it done quickly as well as possible, and you can only do that by partially solving the problem, then by all means do that. That's practical engineering, and I do that with my Engineer's hat on. But that's not going to advance the science

Woods, *ibid.*

Building the green part

Define semantically based abstract syntax

fun HasName : Person -> Name -> Fact

Define concrete syntax by mapping to resource grammar structures

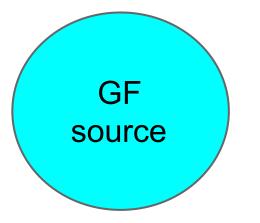
lin HasName p n = mkCl (possNP p name_N) y
 my name is John
lin HasName p n = mkCl p heta_V2 y
 jag heter John
lin HasName p n = mkCl p (reflV chiamare_V) y
 (io) mi chiamo John

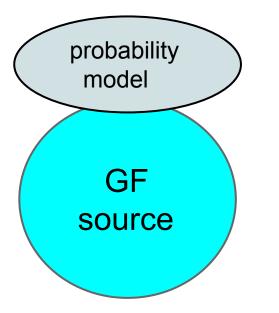
Resource grammars give crucial help

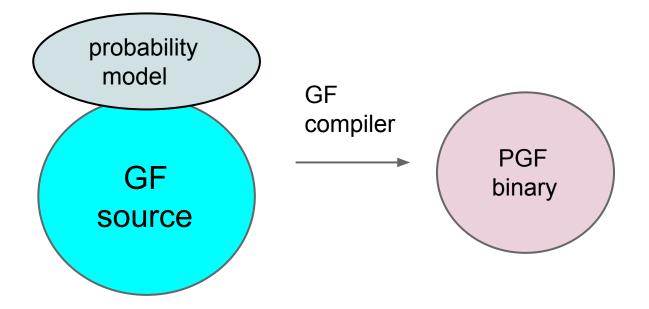
- application grammarians need not know linguistics
- a substantial grammar can be built in a few days
- adding new languages is a matter of a few hours

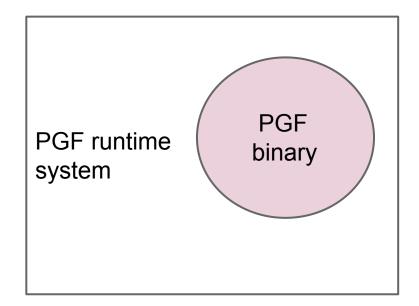
MOLTO's goal was to make this possible.

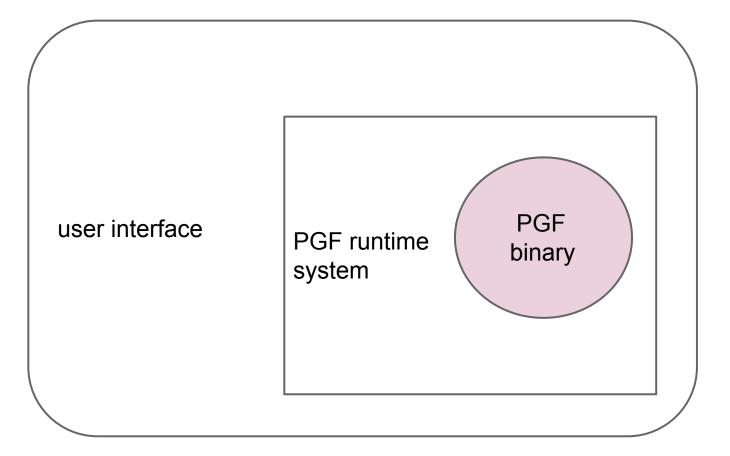
Automatic extraction of application grammars?

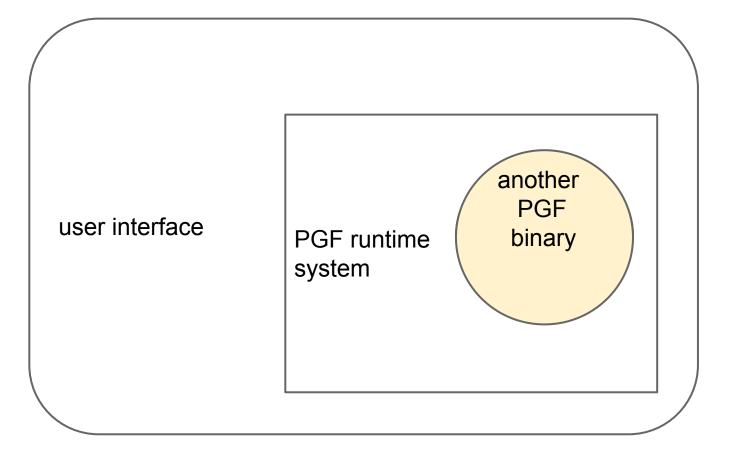

- abstract syntax from ontologies
- concrete syntax from examples
 including phrase tables
- As always, full green quality needs expert verification
- formal methods help (REMU project)

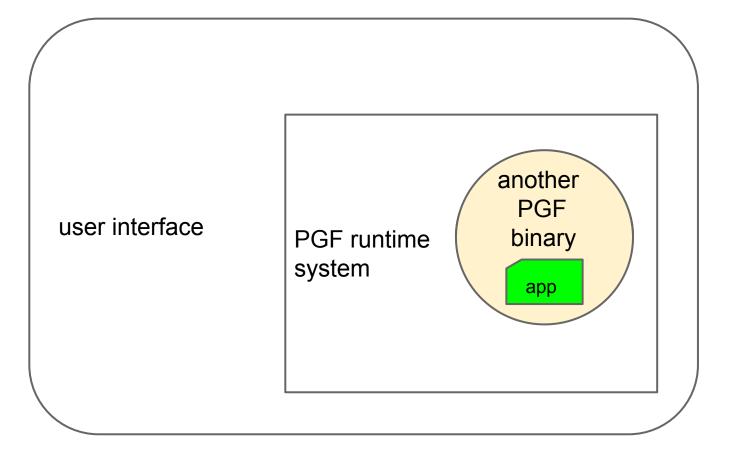

These grammars are a source of

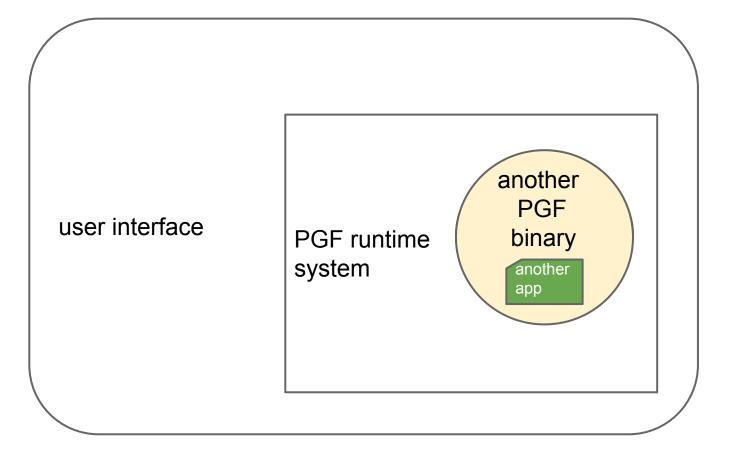

- "non-compositional" translations
- compile-time transfer
- idiomatic language
- translating meaning, not syntax

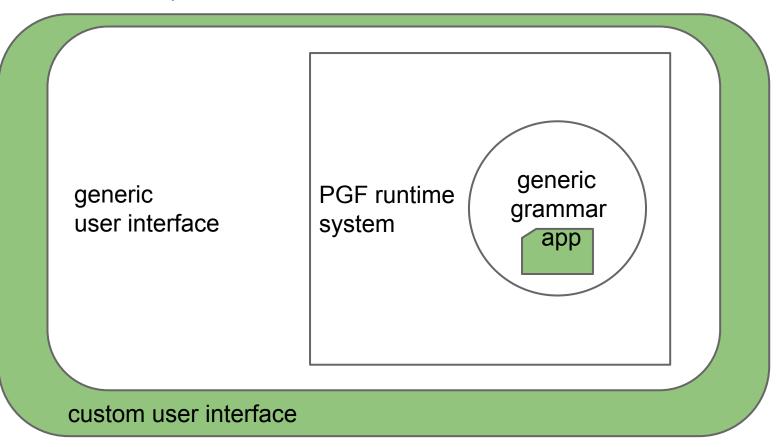

Constructions are the generalized form of this idea, originally domain-specific.


Building the translation system









White: free, open-source. Green: a business idea

User interfaces

- command-line
- shell
- web server
- web applications mobile applications

Demos

To test it yourself

Android app

http://www.grammaticalframework.org/demos/app.html

Web app

http://www.grammaticalframework.org/demos/translation.html

Agenda for future work

Improve the lexicon

Split senses

Improve disambiguation

Introduce constructions

Design and perform evaluation

Current dictionary coverage

Bulgarian	36666	21372
Chinese	17000	16475
Dutch	17000	2154
English	66000	66000
Finnish	57000	4700
French	20000	1155
German	22000	1693
Hindi	34000	175
Italian	16000	641
Spanish	21000	2285
Swedish	25000	2259
	total words	checked words

time

time_N

time_V

tiempo

time_N

vez

time_1_N tiempo

time_2_N vez

time_1_N tiempo Zeit

time_2_N vez Mal

weather_N

Wetter

time_1_N tiempo Zeit

time_2_N vez Mal

See also: 4th GF Summer School

19-31 July 2015 in Marsalforn, Malta