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I Introduction to GF



What is GF: Linguist’s view

A multilingual grammar formalism based on tectogrammatical representations

Divisible 6 is divisible by 2
/ \ 6 è divisibile per 2
/ \ 6 ist teilbar durch 2
6 2 6 on jaollinen 2:lla



What is GF: Mathematician’s view

free algebras with reversible homomorphic mappings to strings

• Math = <Exp,Prop,Div : Exp -> Exp -> Prop>

• Div(x,y)* = concat(x*, ”is divisible by”, y*)

• Div(x,y)* = concat(x*, ”è divisible per”, y*)



What is GF: Programmer’s view

a special-purpose functional programming language for writing translators

fun Divisible : Exp -> Exp -> Prop

lin Divisible x y = x ++ "is divisible by" ++ y
lin Divisible x y = x ++ "è divisible per" ++ y
lin Divisible x y = x ! Nom ++ "ist teilbar durch" ++ y ! Acc
lin Divisible x y = x ! Nom ++ "on jaollinen" ++ y ! Adess



Background

Mathematics:

• Martin-Löf’s type theory (1970)
• Logical frameworks (LF, ALF, Coq)

Linguistics:

• Curry’s tectogrammar + phenogrammar (1961)
• Montague grammar (1970)

Functional programming: ML, Haskell, types, modules

Industry: Multilingual Document Authoring project (Xerox, 1998)



A first example

Abstract syntax (category and function declarations)

cat Exp
cat Prop
fun Even : Exp -> Prop

Concrete syntaxes (linearization rules)

lin Even x = x ++ "is" ++ "even" -- English

lin Even x = x ++ "est" ++ "pair" -- French

lin Even x = x ++ "ist" ++ "gerade" -- German



Linguistic motivation

Translation must preserve meaning

Abstract syntax serves as an interlingua

• hub of translation
• semantic structure expressed in type theory
• limitation to specific domain

Thus we use LF as a framework for interlinguas



Authoring help

Incremental translation: like T9, but grammar-aware.

Web demos: tournesol.cs.chalmers.se:41296

(Incremantal parsing of PMCFG: Angelov, EACL 2009)



Strings are not enough

The French and German rules don’t scale up

*la somme de x et de y est pair

la somme de x et de y est paire

*wenn x ist gerade, x+2 ist gerade

wenn x gerade ist, ist x+2 gerade



Solution: parameters and linearization types

French:

param Gender = Masc | Fem ;

lincat Nat = {s : Str ; g : Gender} ;
lincat Prop = {s : Str} ;

lin Even x = {
s = x.s ++ "est" ++ case x.g of {
Masc => "pair" ;
Fem => "paire"
}

} ;



German: parametrized word order

param Order = Main | Inverse | Subordinate ;

lincat Nat = {s : Str} ;
lincat Prop = {s : Order => Str} ;

lin Even x = {
s = \\o => case o of {
Main => x.s ++ "ist" ++ "gerade" ;
Inverse => "ist" ++ x.s ++ "gerade" ;
Subordinate => x.s ++ "gerade" ++ "ist"
}

} ;



Too much code to write?

lin Even x = {
s = x.s ++ "est" ++ case x.g of {
Masc => "pair" ;
Fem => "paire"
}

} ;

lin Odd x = {
s = x.s ++ "est" ++ case x.g of {
Masc => "impair" ;
Fem => "impaire"
}

} ;



The functional programmer’s solution

Introduce auxiliary functions (operations)

oper regA : Str -> Gender -> Str = \noir,g ->
case g of {
Masc => noir ;
Fem => noir + "e"
} ;

lin Even x = {
s = x.s ++ "est" ++ regA "pair" x.g
} ;

lin Odd x = {
s = x.s ++ "est" ++ regA "impair" x.g
} ;



The advanced functional programmer’s solution

Introduce higher-order functions

oper
predA : (Gender -> Str) -> {s : Str ; g : Gender} -> {s : Str} = \bon,x -> {
s = x.s ++ "est" ++ bon x.g

} ;

lin Even = predA (regA "pair") ;
lin Odd = predA (regA "impair") ;



Resource grammar libraries

Operations can be stored in libraries, written by linguists.

Application programmers use linguistic structures in concrete syntax

lin Even x = mkCl x (mkA "even")

rather than strings:

lin Even x = x.s ++ "is" ++ "even"

Application programmers need not know low-level linguistic details

• parameters
• inflection
• word order



The GF resource grammar library

Core syntax + complete inflectional morphology + small lexicon.

Size: 70 categories, 180 functions, 150 kLOC, 5 person years, 20 programmers.

Languages: 16 finished (Bulgarian, Catalan, Danish, Dutch, English, Finnish,
French, German, Interlingua, Italian, Norwegian, Polish, Romanian, Russian, Span-
ish, Swedish), 5 more partially available (Arabic, Hindi/Urdu, Latin, Thai, Turkish).
ca. 12 more under construction.

Applications:

• software specifications (KeY project)
• mathematical exercises (WebALT project)
• dialogue systems (TALK project)
• multilingual translation on the web (MOLTO project)

Also: to show that GF scales up to wide-coverage grammars.



The organization of the resource grammar library

Language-independent syntax API Syntax

• all languages have S, NP, VP, etc, and same the rules for combining them

Language-dependent morphological API’s ParadigmsLang

• languages differ in the complexity and variation of inflection



Naming conventions

mkC : syntactic operations for constructing objects of category C

word C : words of category C

mk operations are overloaded:

mkCl : NP -> V -> Cl -- x diverges
mkCl : NP -> V2 -> NP -> Cl -- x intersects y
mkCl : NP -> A -> Cl -- x is even
mkCl : NP -> A2 -> NP -> Cl -- x is divisible by y



The module system of GF

Modules of different types:

abstract A = {cat... fun...}

concrete C of A = open R in {lincat... lin...}

resource R = {param... oper...}

The resource modules are eliminated from run-time grammars during compilation.



Opening a module

A module may open other modules:

resource SyntaxEng = ...

concrete MathEng of Math = open SyntaxEng in { ... }

The contents of the opened module are usable, but they are not inherited.

Name clashes are avoided by explicit qualification: SyntaxEng.mkS



Extending a module

A module of any type module can extend modules of the same type

abstract Logic = ...

abstract Arithmetic = Logic ** ...
abstract Geometry = Logic ** ...

abstract Maths = Arithmetic, Geometry ** ...

Extending means inheritance of the contents of the module.



Using the resource grammar library

Here is one typical way to use the resource library:

abstract Math = {
cat Exp ; Prop ;
fun And : Prop -> Prop -> Prop ; Even : Exp -> Prop ;

}

concrete MathEng of Math = open SyntaxEng, ParadigmsEng in {
lincat
Prop = S ;
Exp = NP ;

lin
And A B = mkS and_Conj A B ;
Even x = mkS (mkCl x (mkA "even")) ;

}



The resource API is language-independent

Here is what we wrote for English:

concrete MathEng of Math = open SyntaxEng, ParadigmsEng in {
lincat
Prop = S ; Exp = NP ;

lin
And A B = mkS and_Conj A B ;
Even x = mkS (mkCl x (mkA "even")) ;

}

In French, we can write

concrete MathFre of Math = open SyntaxFre, ParadigmsFre in {
lincat
Prop = S ; Exp = NP ;

lin
And A B = mkS and_Conj A B ;
Even x = mkS (mkCl x (mkA "pair")) ;

}



Common syntax interface

Starting point of GF: semantic structures are language-independent.

Later observation: also syntactic structures are largely the same.

Advantages:

• comparative linguistics
• common API for programmers
• the possibility of parametrized implementations



Splitting a resource into an interface and its instance

Example: fragment of GF resource grammar library

interface Syntax = { instance SyntaxEng of Syntax = {
oper oper
S : Type ; S = ...
Cl : Type ; Cl = ...
NP : Type ; NP = ...
V : Type ; V = ...
A : Type ; A = ...
mkS : Cl -> S ; mkS = ...
mkCl : NP -> A -> Cl ; mkCl = ...

} }

Cf. signature and structure in ML.

Also: a genaralization of abstract vs. concrete.



Incomplete=parametrized module = functor

I.e. a module that opens an interface

incomplete concrete MathI of Math = open Syntax in {
lincat Prop = S ; Exp = NP ;
lin And A B = mkS and_Conj A B ;

}

We can avoid the repetition of code.

How to deal with even vs. pair? Write another interface!



Domain lexicon as interface and instances

Domain lexicon, a.k.a. terminology

interface LexMath = instance LexMathEng of LexMath =
open Syntax in { open SyntaxEng, ParadigmsEng in {
oper oper
even_A : A ; even_A = mkA "even" ;
prime_A : A ; prime_A = mkA "prime" ;

}



Instantiating a functor

Provide instances to each opened interface: given

incomplete concrete MathI of Math = open Syntax, LexMath in ...

we can write

concrete MathEng of Math = MathI with
(Syntax = SyntaxEng), (LexMath = LexMathEng) ;

and then also

concrete MathFre of Math = MathI with
(Syntax = SyntaxFre), (LexMath = LexMathFre) ;

concrete MathGer of Math = MathI with
(Syntax = SyntaxGer), (LexMath = LexMathGer) ;



The modules in a typical application

COMMON: Abstract syntax

abstract Math = {...}

COMMON: Domain lexicon interface

interface LexMath = open Syntax in {...}

COMMON: Top-level functor parametrized on Syntax and domain lexicon

incomplete concrete MathI of Math = open Syntax, LexMath in {...}

SPECIFIC: Domain lexicon instance

instance LexMathEng of LexMath = open SyntaxEng, ParadigmsEng in {...}

SPECIFIC: Top-level functor instantiation

concrete MathEng of Math = MathI with
(Syntax = SyntaxEng), (LexMath = LexMathEng) ;



Porting the application to a new language

Write an instance of the lexicon interface

instance LexMathFin of LexMath = open SyntaxFin, ParadigmsFin in {
oper
even_A = mkA "parillinen" ;
prime_A = mkA "jaoton" ;

}

Mechanically provide an instantiation of the top-level functor

concrete MathFin of Math = MathI with
(Syntax = SyntaxFin),
(LexMath = LexMathFin) ;



Why this works

Logical structures are expressed with the same syntactic structures in different
languages...

...even though Syntax is implemented differently in different languages

But, of course, words are different in different languages - hence the Lex interface
(usually domain-specific).



Discrepancies in the use of the functor

Sometimes the semantics is not expressed by the same syntactic structure.

English: x is prime (an adjective)

Finnish: x on alkuluku (a noun: ”x is a prime-number”)

Possible solution: make the functor and the lexicon interface more general

lin Even x = mkS x prime_VP ;

oper prime_VP : VP ;

But this is not stable when new languages are added.



Solving discrepancies by restricted inheritance

concrete MathFin of Math = MathI - [Prime] with
(Syntax = SyntaxFin),
(LexMath = LexMathFin) ** open ParadigmsFin in {

lin Prime x = mkS x (mkVP (indefNP (mkN "alkuluku"))) ;
}



Adding precision via dependent types

cat
Prop ;
Dom ;
Elem (x : Dom) ;

fun
Set, Number : Dom ;
Empty : Elem Set -> Prop ;
Even : Elem Number -> Prop ;
Equal : (D : Dom) -> Elem D -> Elem D -> Prop ;
EmptySet : Elem Set ;
Forall : (A : Dom) -> (Elem A -> Prop) -> Prop ;



Proof checking as type checking

cat
Text ;
Proof (P : Prop) ;

fun
EmptyIsEmpty : Proof (Empty EmptySet) ;

ReflEq : (A : Dom) -> (a : Elem A) -> Proof (Equal A a a) ;

UnivI : (A : Dom) -> (B : Elem A -> Prop) ->
((x : Elem A) -> Proof (B x)) -> Proof (Forall A B) ;



Obtaining GF

Homepage grammaticalframework.org

Binaries for Linux, Mac OS, Windows

Open-source software

Latest versions with Darcs version controlled (mirrored in read-only Subversion)

On-line documentation



II A grammar for mathematical text



Choices

Unrestricted language vs. controlled language

Full semantic controlled vs. surface syntax

Text structure vs. sentences only

User-extensible vs. static



Choices

Unrestricted language vs. controlled language

Full semantic controlled vs. surface syntax

Text structure vs. sentences only

User-extensible vs. static



Goal

Controlled language for mathematical proofs

Mixture of English/French/German and LaTeX

Coverage of Naproche and beyod

Plugin to proof systems with

• incremental parsing
• generation, translation



Implementation





Implementation

12 Geometry.gf 18 GeometryEng.gf 18 GeometryFre.gf 19 GeometryGer.gf
20 LexLogic.gf 15 LexLogicEng.gf 16 LexLogicFre.gf 16 LexLogicGer.gf
24 Logic.gf 5 LogicEng.gf 15 LogicFre.gf 15 LogicGer.gf

48 LogicI.gf
1 MathGeom.gf 4 MathGeomEng.gf 4 MathGeomFre.gf 4 MathGeomGer.gf
45 MathText.gf 5 MathTextEng.gf 5 MathTextFre.gf 5 MathTextGer.gf

74 MathTextI.gf
10 Symbols.gf

15 SymbolsX.gf
413 total



Grammar

Let’s

• look at the source code
• try it out
• add some concepts

The source code is available in GF/examples/mathtext.


