
Translating between Language and Logic:

What Is Easy and What Is Difficult

Aarne Ranta

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

CADE-23, Wroc law, 4 August 2011



Introduction: why natural lan-
guage matters



Mature technology

Mature technology is invisible: the user doesn’t notice it.

Example: Unix

• in 1995: the user had to be a Unix hacker

• in 2011: Unix is hidden under MacOS or Ubuntu or Android



When will formal proof systems mature?

Many systems are sophisticated, efficient, and robust.

But they require an expert to use, with special training.

One reason: formalized proof languages

• close to the machine language of the proof engine

• constantly reminds the user of the existence of the engine.



Some use cases

• Students wanting help to construct and verify proofs.

• Mathematicians wanting to prove new theorems.

• Engineers wanting to verify software or hardware.

In all cases: constant manual conversions between informal language

and the formalism.



Cf. computer algebra

E.g. Mathematica: normal mathematical notations,

√
x

instead of

Sqrt[x]

This is one reason why computer algebras are main-stream tools in

mathematics education, unlike proof systems.

NB proof systems like Matita can now deal with this part.



The language of proof systems

What is the counterpart of algebraic formulas in computer algebra?

Unfortunately, it is not a formal notation.

It is mathematical text - a mixture of natural language and formulas.

The natural language part cannot be fully replaced by formulas.

Proof systems must support this

• to hide their internal technology

• to reach the maturity as computer algebras



This has been a popular idea

STUDENT Bobrow 1964

Evidence Algorithm Glushkov 1970

Mathematical Vernacular de Bruijn 1994

Mizar Trybulec 2006

OMEGA Benzmüller & al. 1997

Isar Wenzel 1999

MOWGLI Asperti & al. 2003

Vip Zinn 2004

SAD Paskevich & al. 2004

Theorema Buchberger & al. 2006

MathLang Kamareddine & Wells 2008

Naproche Cramer & al. 2009

FMathL Neumaier 2009



Not our goal

We are not proposing yet another proof language.

Instead:

• an analysis of mathematical language

• a method for implementing parts of it

The method can be applied to existing systems.

We show software and a library that can be used.



Controlled Natural Language

A common feature of all systems mentioned: they use English-like

notations permitting

• user input via parser (not always)

• system output via printer (not always)

These are always different fragments

• built from scratch over and over again

• requires learning by the user

• considerable effort of development and maintenance



Our goal today

A method to implement natural-like mathematical languages easily,

• in a few days or hours

• with a couple of pages of code

Bonus: multilinguality

• you can port the interface from one language to another

• you can translate mathematics

Bonus: incremental parsing

• the user is guided to stay within the language



Base-line logical language

Formula:

(∀x)(Nat(x) ⊃ Even(x) ∨Odd(x))

Translations to English, German, French, and Finnish:

for all x, if x is a natural number then x is even or x is odd

für alle x, wenn x eine natürliche Zahl ist, dann ist x gerade
oder x ist ungerade

pour tout x, si x est un nombre entier alors x est pair ou x est
impair

kaikille x, jos x on luonnollinen luku niin x on parillinen tai x on
pariton

Easy to translate in both directions.



More sophisticated language

The same formula:

(∀x)(Nat(x) ⊃ Even(x) ∨Odd(x))

Translations to English, German, French, and Finnish:

every natural number is even or odd

jede natürliche Zahl ist gerade oder ungerade

tout nombre entier est pair ou impair

jokainen luonnollinen luku on parillinen tai pariton

The translation is more tricky but not difficult.



Easy vs. difficult

Definition. A problem is easy if it can be solved by well-known tech-

niques. (This doesn’t mean that it was easy to develop these tech-

niques in the first place.)

Definition: A problem is difficult if it is not easy.

Example: easy problems in natural language interfaces don’t require

training in linguistics but can use existing tools.



Compare to automated theorem proving

Some classes of formulas are easy

Some classes are easy for humans but still impossible for computers

Some classes will remain difficult forever

To make progress (in both natural language processing and automated

reasoning):

• identify and extend the classes of easy problems

• don’t get paralyzed by the impossibility of the full problem.



The Language of Mathematics



The structural levels

Text: chapters, sections

Definitions, theorems, lemmas, examples

diagrams∗

Sentences

Words: nouns, adjectives, verbs,...

Symbols: formulas, variables, numbers,...

∗a diagram showing a triangle may bind variables used for its sides and angles in the
text



The sentence level: two kinds of elements

Verbal: natural language words

Symbolic: mathematical formulas

Some concepts are only verbal:

x is even

Some have both verbal and symbolic expressions:

x > y

x is greater than y



Legal and illegal mixtures

A verbal part may contain symbolic parts:

• as noun phrases,

x2 is divisible by
√
x

• as subsentences,

we conclude that x2 >
√
x.

A symbolic part may not contain verbal parts:

*
√

the sum of all numbers from 1 to 100

with set comprehensions as a possible exception: {x | x is divisible by 7}



Logical constants

Connectives and quantifiers are never symbolic (if we want to capture

the traditional style).

They are expressed by

• conjunctions: and, or, if

• variables: for all x,...

• in situ quantifiers: the square of every odd number is odd



Expressing logic in language

Rule 1. Eliminate logical constants by using conjunctions and variables.

Rule 2. Eliminate variables by using in situ quantifiers.

Rule 3. Use symbolic expressions whenever possible.

We can thus improve to a certain limit:

for every odd number x, the square of x is odd =⇒

for every odd number x, x2 is odd =⇒

the square of every odd number is odd =⇒

* (every odd number)2 is odd



Living with ambiguity

Ganesalingam 2010: mathematical text is highly ambiguous.

The controlled language approach: ban ambiguity by design.

But:

• the semantics needs to be learnt and remembered

• hence it may be misunderstood or forgotten

Better: detect ambiguity and eliminate it by paraphrase or by se-

mantic considerations.



Example: operator scope

The sentence

for all x, x is even or x is odd

has two context-free parses,

for all x, (x is even or x is odd)

(for all x, x is even) or x is odd

The latter is rejected in binding analysis.



Example: PP attachment

Chomsky’s example (PP = Prepositional Phrase):

John saw a man with a telescope.

(John saw a man) with a telescope

John saw (a man with a telescope)

Both make sense.



PP attachment in mathematics

(Ganesalingam, from Grigoriev \& al. 1995):

ρ is normal if ρ generates the splitting field of some polynomial

over F0

(ρ generates the splitting field of some polynomial) over F0

ρ generates ((the splitting field of some polynomial) over F0)

ρ generates (the splitting field of (some polynomial over F0))

Only one of these makes sense...



Example: quantifier scope

The linguists’ standard example

every man loves a woman

is interpreted as either ∀∃ or ∃∀.

Many mathematicians would follow the rule that scopes go from left

to right.



Counter-examples to left-to-right scope

Not always the preferred interpretation:

In New York City, a pedestrian is hit by a car every five minutes.

A solution exists for every equation of the form x+ p = q.

Every element of some set of natural numers is prime. (Gane-

salingam)

Not invariant under translation:

English: Every man likes a woman.

Italian: Una donna piace a ogni uomo.



The Method: GF in a Nutshell



What is GF

GF = Grammatical Framework = Logical Framework + concrete syn-

tax

GF was born in 1998 at Xerox Research in Grenoble, as

• an extension of ALF into a grammar formalism

• an extension of type theory from mathematics to all kinds of lan-

guage

• a declarative approach to multilingual translation systems



Abstract and Concrete Syntax

grammar = abstract syntax + concrete syntax

A BNF grammar rule fuses them

Exp ::= Exp "*" Exp

In GF it is split into two rules

fun EMul : Exp -> Exp -> Exp

lin EMul x y = x ++ "*" ++ y

fun: function for building trees (abstract syntax)

lin: linearization of trees to strings (concrete syntax)



Reversibility

A GF grammar is a declarative program for

• linearizing trees to strings

• parsing strings to trees

--- linearization --->

(EMul x y) x * y

<---- parsing --------



Ambiguity

GF grammars can be ambiguous.

Then parsing returns many trees.

x * y * z ------> (EMul (EMul x y) z)

(EMul x (EMul y z))

Ambiguity can here be avoided by design (by using precedences).

It may also be unavoidable.



Multilinguality

multilingual grammar = one abstract syntax + many concrete

syntaxes

fun EMul : Exp -> Exp -> Exp -- abstract

lin EMul x y = x ++ "*" ++ y -- Java

lin EMul x y = x ++ y ++ "imul" -- JVM

Compilation:

2 * x ----> (EMul x y) ----> iconst_2

iload_0

imul

By reversibility, we also have decompilation!



Compiling natural language

As a first approximation (to be corrected),

lin EMul x y = "the product of" ++ x ++ "and" ++ y -- English

lin EMul x y = "le produit de" ++ x ++ "et de" ++ y -- French

lin EMul x y = "das Produkt von" ++ x ++ "und" ++ y -- German

lin EMul x y = x ++ "ja" ++ y ++ "tulo" -- Finnish



A multi-source multi-target compiler-decompiler

the product of x and y x:n ja y:n tulo

\ /

(EMul x y)

/ \

le produit de x et de y x * y



Incremental parsing

The user is guided by the grammatically correct next words.

We show the demo in

http://www.grammaticalframework.org/demos/minibar/mathbar.html

http://www.grammaticalframework.org/demos/minibar/mathbar.html


Language-specific features

Languages have parameters like gender, case, number.

Example: German requires the dative case (dem) for the arguments:

das Produkt von dem Produkt von x und y und z

GF can handle this without changing the abstract syntax.



The case parameter for German

Expressions are linearized to inflection tables, which have values for

each case.

param Case = Nom | Dat

lin EMul x y = table {

Nom => "das Produkt von" ++ x ! Dat ++ "und" ++ y ! Dat ;

Dat => "dem Produkt von" ++ x ! Dat ++ "und" ++ y ! Dat

}

(This is still simplified, since German has four cases.)



A more involved use of parameters

A predication in German, x is prime

fun Prime : Exp -> Proposition

lin Prime x = \\ord,mod =>
let

ist = case <mod,x.n> of {
<Ind, Sg> => "ist" ;
<Ind, Pl> => "sind" ;
<Conj,Sg> => "sei" ;
<Conj,Pl> => "seien"
}

in case ord of {
Main => x.s ! Nom ++ ist ++ "unteilbar" ;
Sub => x.s ! Nom ++ "unteilbar" ++ ist ;
Inv => ist ++ x.s ! Nom ++ "unteilbar"
}



Grammar Engineering

Getting all linguistic details right is difficult - or at least laborious.

GF makes this easy by the GF Resource Grammar Library:

• low-level details of morphology and syntax

• 20 languages: Afrikaans, Bulgarian, Catalan, Danish, Dutch, En-

glish, Finnish, French, German, Italian, Nepali, Norwegian, Persian,

Polish, Punjabi, Romanian, Russian, Spanish, Swedish, Urdu

• effort: 3-5 kLOC of GF code, 3-9 person months per language



The GF Resource Grammar API



The product function with the library

API for building noun phrases (NP) with relational nouns (N2):

app : N2 -> NP -> NP -- the successor of x

app : N2 -> NP -> NP -> NP -- the sum of x and y

Usage for English, German, French, and Finnish:

lin EMul = app (mkN2 (mkN "product"))

lin EMul = app (mkN2 (mkN "Produkt" "Produkte" Neutr))

lin EMul = app (mkN2 (mkN "produit"))

lin EMul = app (mkN2 (mkN "tulo"))

The morphology function mkN infers the noun inflection from the dic-

tionary form (except in German).



Division of labour

Linguist

• writes the resource grammars

• knows the linguistic details

Application programmer

• writes the application grammar

• knows the domain semantics and idiom

Example: product in Finnish

• domain knowledge: pick tulo in mathematics, not tuote

• linguist knowledge: inflects tulo, tulon, tuloa, ..., tuloin



More on GF

http://www.grammaticalframework.org

A. Ranta, Grammatical Framework: Programming with Multilingual

Grammars, CSLI, Stanford, 2011.

http://www.grammaticalframework.org




Baseline Translation for the Core
Syntax of Logic



The core formalism

construction symbolic verbal
negation ∼ P it is not the case that P
conjunction P &Q P and Q
disjunction P ∨ Q P or Q
implication P ⊃ Q if P then Q
universal quantification (∀x)P for all x, P
existential quantification (∃x)P there exists an x such that P



Abstract Syntax in GF

cat Prop ; Ind ; Var

fun

And, Or, If : Prop -> Prop -> Prop

Not : Prop -> Prop

Forall, Exist : Var -> Prop -> Prop

IVar : Var -> Ind

VStr : String -> Var



Instantiation to a lexicon

fun

IInt : Int -> Ind

Add, Mul : Ind -> Ind -> Ind

Nat, Even, Odd : Ind -> Prop

Equal : Ind -> Ind -> Prop



An example

English sentence

for all x, if x is a natural number then x is even or x is odd

Abstract syntax

Forall (VStr "x") (If (Nat (IVar (VStr "x")))

(Or (Even (IVar (VStr "x"))) (Odd (IVar (VStr "x")))))

Now we need to write the concrete syntax.



Concrete syntax of the core calculus

This code is common for all languages in the Resource Grammar Li-

brary:

lincat

Prop = S ;

Ind, Var = NP

lin

And = mkS and_Conj

Or = mkS or_Conj

If p q = mkS (mkAdv if_Subj p) (mkS then_Adv q)

Not = negS

Forall x p = mkS (mkAdv for_Prep (mkNP all_Predet x)) p

Exist x p = mkS (existS (mkNP x (mkRS p)))

IVar x = x

VStr s = symb s



Concrete syntax of the lexicon, English

lin

IInt = symb

Add = app (mkN2 (mkN "sum"))

Mul = app (mkN2 (mkN "product"))

Nat = pred (mkCN (mkA "natural") (mkN "number"))

Even = pred (mkA "even")

Odd = pred (mkA "odd")

Equal = pred (mkA "equal")



Concrete syntax of the lexicon, German

lin

IInt = symb

Add = app (mkN2 (mkN "Summe"))

Mul = app (mkN2 (mkN "Product" "Produkte" neuter))

Nat = pred (mkCN (mkA "natürlich") (mkN "Zahl" "Zahlen" feminine))

Even = pred (mkA "gerade")

Odd = pred (mkA "ungerade")

Equal = pred (mkA "equal")



The predication API

pred : A -> NP -> S -- x is even

pred : A -> NP -> NP -> S -- x and y are equal

pred : CN -> NP -> S -- x is a number

pred : V -> NP -> S -- x converges

pred : V2 -> NP -> NP -> S -- x includes y



The MOLTO lexicon

200 mathematical concepts from OpenMATH domain lexica

Morphology and combinatorics for 12 languages

Built in GF and reusable as library for new applications



Problems with the baseline grammar

Narrow coverage

Clumsy language

Ambiguity

P and Q or R : (P&Q) ∨R vs. P&(Q ∨R)
it is not the case that P and Q : (∼ P )&Q vs. ∼ (P&Q)
for all x, P and Q : ((∀x)P )&Q vs. (∀x)(P&Q)



Example of connective precedence

Restaurant lunch menu:

Bread and salad or soup, 10 z l

Can you get both bread and soup?



Solution: bullet list

(P&Q) ∨R | P&(Q ∨R)
either of the following: | both of the following:
• bread and sallad | • bread
• soup | • sallad or soup

Precedence order by stipulation would not solve the problem

• users would need to know this

• if and binds stronger than or, P&(Q ∨R) is inexpressible!



Bullets by parametrization

(Easy.) Use a Boolean parameter that indicates whether a proposi-

tion is complex (i.e. formed by a connective). Thus propositions are

linearized to records

lincat Prop = {s : S ; isCompl : Bool}

The rule: if none of the operands is complex, use sentence conjunction;

otherwise, use bullets:

lin And p q = case <p.isCompl, q.isCompl> of {

<False,False> => {s = mkS and_Conj p.s and q.s ; isCompl = True} ;

_ => {s = bulletS Pl "both" p.s q.s ; isCompl = False}

}



Managing ambiguity, in general

Whether a GF grammar is ambiguous is undecidable.

But it is decidable for any give sentence: test with the parser.

Method:

1. Generate a set of paraphrases

2. Order them by e.g. shortness

3. Take the shortest unambigous one

Even better: use semantics to disambiguate (but this is in general

difficult).



Semantic disambiguation methods

1. Overload resolution can in GF by dependent types:

EMul : (t : NumType) -> Exp t -> Exp t -> Exp t

to select dmul rather than imul for 3.14 * x.

2- Binding analysis can in GF be expressed with higher-order ab-

stract syntax:

Forall : (Var -> Prop) -> Prop

to disambiguate for all x, x is even or x is odd.

In general difficult but needed in full math text.



Beyond the Baseline Transla-
tion: Easy Improvements



Compositionality

Linearization in GF is compositional:

(f t1 . . . tn)∗ = h t∗1 . . . t
∗
n

Thus: the subtree structure no longer available.

We have been translating logic to language in this way.

Now:

1. Extend the abstract syntax beyond logic

2. Find best expressions by a non-compositional procedure



Extended Abstract Syntax

construction symbolic verbal (example)
atom negation A x is not even
conjunction of proposition list &[P1, . . . , Pn] P, Q and R
conjunction of predicate list &[F1, . . . , Fn] even and odd
conjunction of term list &[a1, . . . , an] x and y
bounded quantification (∀x1, . . . , xn : K)P for all points x and y, P
in-situ quantification F (∀K) every number is even
one-place predication F1(x) x is even
two-place predication F2(x, y) x is equal to y
reflexive predication Refl(F2)(x) x is equal to itself
modified predicate Mod(K,F )(x) x is an even number

(∨ similar to & and ∃ similar to ∀.)



New categories

Lists of propositions, predicates, variables, and individual terms.

Predicates with one or two places (”adjectives”).

Kind predicates (”nouns”).

Atomic propositions.



What we get

The sentence

every natural number is even or odd

as a compositional translation of the formula

∨[Even,Odd](∀Nat)

which is a paraphrase of the formula

(∀x)(Nat(x) ⊃ Even(x) ∨Odd(x))

whose compositional translation is

for all natural numbers x, x is even or x is odd



Defining the paraphrase

Extended to core: easy (”denotational semantics”)

Core to extended: more tricky (an optimization problem)



From Extended Syntax to Core Syntax

Denotational semantics, with the core syntax as a model of the ex-

tended syntax.

The semantics follows the ideas of Montague (1974)

Key question: in-situ quantification.

Key idea: Ind is interpreted as (Ind -> Prop) -> Prop.



Interpreting quantification

Expected type:

(∀K)∗ : (Ind → Prop) → Prop

Definition:

(∀K)∗F = (∀x : K∗)(F x)

(The bound variable x must be fresh in the context of application.)



Moving out the domain

In the usual way:

((∀x1, . . . , xn : K)P )∗ = (∀x1) · · · (∀xn)((K∗x1) & . . . & (K∗xn) ⊃ P ∗)

But the intermediate stage is retained if the target logic formalism

supports domain-restricted quantifiers, as e.g. TFF and THF (Sutcliffe

& Benzmüller 2010).



Conjunctions of terms

Like quantifiers: functions on propositional functions,

&[a1, . . . , an]∗ F = &[a∗1 F, . . . , a
∗
n F ]



Simple predication

Must be ”reversed”: the argument is applied to the predicate.

(F (a))∗ = a∗F ∗

(F (a, b))∗ = a∗((λx)b∗((λy)(F ∗x y)))

Cf. Frege, Begriffsschrift (1879), §10: ”one can conceive Φ(A) as a

function of the argument Φ”!



Complex predication

Conjunction of predicates:

&[F1, . . . , Fn]∗ x = &[(F ∗1x), . . . , (F ∗nx)]

Reflexive predicates:

(Refl(F ))∗x = F ∗xx

Modified kind predicates:

(Mod(K,F ))∗ x = (K∗x)&(F ∗x)



One direction complete

The sentence

every natural number is even or odd

is parsed to a tree for the formula

∨[Even,Odd](∀Nat)

whose interpretation is the tree for the formula

(∀x)(Nat(x) ⊃ Even(x) ∨Odd(x))

which linearizes to

for all x, if x is a natural number then x is even or x is odd.



From Core Syntax to Extended Syntax

Problem: given a proposition P, find the best possible tree (or trees)

that express the same proposition as P.

Same is defined by the interpretation above.

Best is defined by the criteria

• minimal use of variables

• maximal use of symbolism

• shortness

• no ambiguity



NLG techniques

Not invented by us - but in GF we can make them language-independent.

NLG = Natural Language Generation (Reiter & Dale 2000)

Extracting Text from Proofs (Coscoy, Kahn & Théry 1995)

Expressing logical formulas in natural language (Friedman 1981)

Implementation in Haskell with

• embedded grammars

• almost compositional operations (Bringert and Ranta 2008)



In-situ quantification

Replace a bound variable with a quantifier phrase.

(∀x : K)P =⇒ P ((∀K)/x)

Conditions (dictated by the semantics):

• P is atomic

• P has exactly one occurrence of the variable.

Examples:

for all numbers x, x is even =⇒ every number is even

*for all numbers x, x is even or x is odd =⇒ every number is

even or every number is odd



Aggregation

Share common parts - subjects or predicates:

&[F1(a), . . . , Fn(a)] =⇒ &[F1, . . . , Fn](a)

&[F (a1), . . . , F (an)] =⇒ F (&[a1, . . . , an])

Examples:

x is even or x is odd =⇒ x is even or odd.

x is even or y is even =⇒ x or y is even

Further optimization: sorting the conjuncts to group maximally long

segments.



Effects of aggregation

Shortens the expression

Reduces ambiguity

x is even or x is odd and y is odd =⇒

x is even or odd and y is odd | x is even or x and y are odd.

Reduces the number of occurrences of a variable, thus helps in-situ

quantification.



A cumulative effect

Thus aggregation can create an opportunity for in-situ quantification:

for all numbers x, x is even or x is odd

=⇒ for all numbers x, x is even or odd

=⇒ every number is even or odd

Recall: in-situ before aggregation would create

every number is even or every number is odd



Extracting kind predicates

To create opportunity for in-situ quantification:

(∀x)(K(x) ⊃ P ) =⇒ (∀x : K)P

(∃x)(K(x)&P ) =⇒ (∃x : K)P



Verb negation

For atomic propositions,

∼ A =⇒ A

Example:

it is not the case that x is even =⇒ x is not even

Condition: no in-situ quantifiers in A, since every natural number is

not even is ambiguous.



Reflexivization

Equal first and second arguments:

F (x, x) =⇒ Refl(F )(x)

Example:

x is equal to x =⇒ x is equal to itself

Opportunity for in-situ quantification: every natural number is equal

to itself.



Modification

Combine a kind and a modifying predicate into a complex kind predi-

cate

K(x)&F (x) =⇒ Mod(K,F )(x)

Example:

x is a number and x is even =⇒ x is an even number

Opportunity for in-situ quantification: some even number is prime.



Flattening

Binary conjunctions to list conjunctions:

P and Q and R =⇒ P, Q and R

Effects:

• syntactic ambiguity is eliminated

• bullet lists can have arbitrary length

• opportunities are created for aggregation.



Verbal vs. Symbolic

Principles:

• symbolic expressions are unwanted for logical structure

• otherwise, symbolic expressions are preferred to verbal

• but, symbolic expressions may not have verbal parts

Strategy:

1. Perform the above optimizations.

2. Express symbolically whatever is possible.



Successful symbolic expression

for all x, if x is a number and x is odd, then the sum of x and

the square of x is even

=⇒ for all odd numbers x, the sum of x and the square of x

is even

=⇒ for all odd numbers x, x+ x2 is even



Unsuccessful symbolic expression

for all x, if x is a number and x is odd, then x2 is odd

=⇒ * (every odd number)2 is odd

=⇒ the square of every odd number is odd



Implementation

Easy : possible in linearization!

Just use a Boolean parameter to say whether an expression is symbolic.

lin Square x = {

s = case x.isSymbolic of {

True => x.s ++ "^2" ;

False => "the square of" ++ x.s

} ;

isSymbolic = x.isSymbolic

}



A demo system

Input: sentence in Eng, Fin, Fre, Ger, Swe, Latex

Outputs:

• abstract syntax tree and its translations

• normalized tree and its translations

• optimized tree and its translations



Example 1, parsed

echo "for all x , if x is a number , then x is even or x is odd" | ./Trans

PUniv (VString "x") (PImpl (PAtom (AKind Nat (IVar (VString "x")))) (PConj COr

(PAtom (APred1 Even (IVar (VString "x")))) (PAtom (APred1 Odd (IVar (VString "x"))))))

for all x , if x is a number , then x is even or x is odd

jokaiselle x , jos x on luku , niin x on parillinen tai x on pariton

pour tout x , si x est un entier , alors x est pair ou x est impair

für alle x , wenn x eine Zahl ist , dann ist x gerade oder x ist ungerade

(∀x)((x ∈ N) ⊃ (Even(x)) ∨ (Odd(x)))

för alla x , om x är ett tal , s̊a är x jämnt eller x är udda



Example 1, normalized

echo "for all x , if x is a number , then x is even or x is odd" | ./Trans

PUniv (VString "x") (PImpl (PAtom (AKind Nat (IVar (VString "x")))) (PConj COr

(PAtom (APred1 Even (IVar (VString "x")))) (PAtom (APred1 Odd (IVar (VString "x"))))))

for all x , if x is a number , then x is even or x is odd

jokaiselle x , jos x on luku , niin x on parillinen tai x on pariton

pour tout x , si x est un entier , alors x est pair ou x est impair

für alle x , wenn x eine Zahl ist , dann ist x gerade oder x ist ungerade

(∀x)((x ∈ N) ⊃ (Even(x)) ∨ (Odd(x)))

för alla x , om x är ett tal , s̊a är x jämnt eller x är udda



Example 1, optimized

echo "for all x , if x is a number , then x is even or x is odd" | ./Trans

PAtom (APred1 (ConjPred1 COr (BasePred1 Even Odd)) (IUniv Nat))

every number is even or odd

jokainen luku on parillinen tai pariton

tout entier est pair ou impair

jede Zahl ist gerade oder ungerade

∨[Even,Odd](∀N)

varje tal är jämnt eller udda



Example 2, parsed

echo "for all even numbers x , the square of x is even" | ./Trans

PUnivs (BaseVar (VString "x")) (ModKind Nat Even) (PAtom (APred1 Even

(IFun1 Square (IVar (VString "x")))))

for all even numbers x , x2 is even

kaikelle parillisille luvuille x , x2 on parillinen

pour tous les entiers pairs x , x2 est pair

für alle gerade Zahlen x , ist x2 gerade

(∀x ∈Mod(N,Even))(Even(x2))

för alla jämna tal x , är kvadraten av x jämn



Example 2, normalized

echo "for all even numbers x , the square of x is even" | ./Trans

PUniv (VString "x") (PImpl (PConj CAnd (PAtom (AKind Nat (IVar (VString "x"))))

(PAtom (APred1 Even (IVar (VString "x"))))) (PAtom (APred1 Even (IFun1 Square

(IVar (VString "x"))))))

for all x , if x is a number and x is even , then x2 is even

jokaiselle x , jos x on luku ja x on parillinen , niin x2 on parillinen

pour tout x , si x est un entier et x est pair , alors x2 est pair

für alle x , wenn x eine Zahl ist und x gerade ist , dann ist x2 gerade

(∀x)(((x ∈ N)&(Even(x))) ⊃ Even(x2))

för alla x , om x är ett tal och x är jämnt , s̊a är kvadraten av x jämn



Example 2, optimized

echo "for all even numbers x , the square of x is even" | ./Trans

PAtom (APred1 Even (IFun1 Square (IUniv (ModKind Nat Even))))

the square of every even number is even

jokaisen parillisen luvun neliö on parillinen

le carré de tout entier pair est pair

das Quadrat von jeder geraden Zahl ist gerade

Even(square(∀Mod(N,Even)))

kvadraten av varje jämnt tal är jämn



The Limits of Easy Techniques



Translating arbitrary text to logic

Can be done: Boxer (Bos & al. 2004).

Used for textual entailment tasks.

But not precise enough for e.g. proof checking.

In linguistics, there is always a trade-off between coverage and preci-

sion.



The dynamicity of language

(Ganesalingam 2010)

The interpretation depends on context.

The context may even extend the syntax, when new concepts are

defined.

λ + K = S

in Barendregt 1981 stands for the theory λ enriched with the axiom

K = S, and should hence be parsed λ + (K = S).

(NB programming languages like Haskell permit something similar.)



Generating text from logic

Easy: definitions and theorems, and their sequences.

Difficult: proofs, which are trees.



Generating text from proofs

Main problems:

• restructuring the prood

• ignoring details

To be solved first: make formal proofs readable!



Some projects using GF for logic
and mathematics



Alfa

Type-theoretical proof editor Alfa + GF grammar + lexical annota-

tions.

Hallgren & Ranta 2000

No dependent types in GF; type checking in Alfa.





KeY

Software verification system + GF grammar + lexical annotations +

NLG techniques.

Johannisson 2005, Beckert & al. 2006

Dependent types giving a type system for OCL and guiding authoring.





WebALT

Web Advanced Learning Technology, a European project aiming to

build a repository of multilingual math exercises.

Caprotti 2006

Used formalizations from the OpenMath project Abbott & 1996

Continued in the MOLTO project

Saludes & Xambó 2011 (THedu at CADE).





Attempto

Attempto Controlled English, a natural language fragment used for

knowledge representation and reasoning (Fuchs & al 2008.

Reimplemented in GF and ported to five other languages.

Angelov & Ranta 2010.

On top of this, a natural language interface to OWL in English and

Latvian Gruzitis & Barzdins 2011.





SUMO

Suggested Upper Merged Ontology (Pease 2011)

Converted to GF, with improved natural language generation for three

languages using RGL.

Angelov & Enache 2010.

Uses dependent types to express the semantics of SUMO.





MathNat

An educational proof system linked to theorem proving in the TPTP

format

Humayoun & Raffalli 2010

http://www.lama.univ-savoie.fr/˜humayoun/phd/mathnat.html

Ambitious features, e.g. pronoun resolution.

http://www.lama.univ-savoie.fr/~{}humayoun/phd/mathnat.html




MOLTO KRI (Knowledge Representation Infrastruc-
ture

A query language with a back end in SPARQL for ontology-based

reasoning.

Mitankin & al-2010

http://molto.ontotext.com/

http://molto.ontotext.com/


Some conclusions



What is easy

To build translators between formal and informal languages in GF:

• reasonably nice language

• portable to 20 languages in the library

• effort: a few days’ engineering, or an undergraduate project



What is difficult

To translate arbitrary mathematical text to logic.

To generate good text from complex proofs.



Available code

http://www.grammaticalframework.org/gf-tutorial-cade-2011/code/

Trans.hs -- top loop

TransProp.hs -- conversions

Makefile

Prop.gf -- abstract syntax

PropI.gf -- concrete syntax, functor

PropEng.gf -- concrete syntax, English

PropFin.gf -- concrete syntax, Finnish

PropFre.gf -- concrete syntax, French

PropGer.gf -- concrete syntax, German

PropSwe.gf -- concrete syntax, Swedish

PropLatex.gf -- concrete syntax, symbolic logic in LaTeX

http://www.grammaticalframework.org/gf-tutorial-cade-2011/code/


(PGreeting GThankYou)




