
 Aarne Ranta

 CNL 2014, Galway
 20-22 August 2014

CLT

Embedded
Controlled Languages

Joint work with
Krasimir Angelov, Björn Bringert, Grégoire
Détrez, Ramona Enache, Erik de Graaf,
Normunds Gruzitis, Qiao Haiyan, Thomas
Hallgren, Prasanth Kolachina, Inari Listenmaa,
Peter Ljunglöf, K.V.S. Prasad, Scharolta
Siencnik, Shafqat Virk

50+ GF Resource Grammar Library
contributors

Embedded programming languages
DSL = Domain Specific Language

Embedded DSL = fragment (library) of a host language
+ low implementation effort
+ no additional learning if you know the host language
+ you can fall back to host language if DSL is not enough

- reasoning about DSL properties more difficult

Timeline

1998: GF = Grammatical Framework
2001: RGL = Resource Grammar Library
2008: CNL, explicitly
2010: MOLTO: CNL-based translation
2012: wide-coverage translation
2014: embedded CNL translation

Outline

● “CNL is a part of NL”

● CNL embedded in NL

● Example: translation

● Demo: web and mobile app

CNL as a part of NL

It is a part:
● it is understandable without extra learning

It is a proper part:
● it excludes parts that are not so good
● it can be controlled, maybe even defined

How to define and delimit a CNL

How to guarantee that it is a part
● the CNL may be formal, the NL certainly isn’t

How to help keep within the limits
● so that the user stays within the CNL

Bottom-up vs. top-down CNL

Bottom-up: define CNL rule by rule
● nothing is in the CNL unless given by rules
● e.g. Attempto Controlled English
Top-down: delimit CNL by constraining NL
● everything is in the CNL unless blocked by

rules
● e.g. Simplified English

Defining and delimiting CNL

Bottom-up:
● How do we know that the rules are valid NL?

Top-down:
● How do we decide what is in the CNL?

Defining bottom-up
 Message ::= “you have” Number “points”

you have five points

you have one points

Delimiting top-down

 Passives must be avoided.

How to recognize them in all contexts? Tenses,
questions, infinitives, separate from
adjectives...

An answer to both problems

Define CNL formally as a part of NL
● use a grammar of the whole NL
● bottom-up: rules defined as applications of

NL rules
● top-down: constraints written as conditions

on NL trees

The whole NL?
An approximation: GF Resource Grammar Library (RGL)
● morphology
● syntactic structures
● lexicon
● common syntax API
● 29 languages

Bottom-up CNL
Use RGL as library
● use its API function calls rather than plain strings

 HavePoints p n = mkCl p have_V2 (mkNP n point_N)

This generates you have five points, she has one point, etc
Also in other languages

Top-down CNL
Use RGL as run-time grammar
● use its parser to produce trees
● filter trees by pattern matching
 hasPassive t = case t of

 PassVPSlash _ -> return True

 _ -> composOp hasPassive t

(Bringert & Ranta, A Pattern for Almost Compositional
Operations, JFP 2008)

Top-down CNL
Use RGL as run-time grammar
● change unwanted input

 unPassive t = case t of
 PredVP np (PassVPSlash vps) -> liftM2 PredVP (unPassive np) (unPassive vps)
 _ -> composOp unPassive t

Non-CNL input is recognized but corrected.

Embedded bottom-up CNL
1. Define CNL as usual, maybe with RGL as library
2. Build a module that inherits both CNL and RGL

abstract Embedded = CNL, RGL ** {

 cat Start ;

 fun UseCNL : CNL_Start -> Start ;

 fun UseRGL : RGL_Start -> Start ;

 }

Using embedded CNL
Parsing will try both CNL and RGL.

You can give priority to CNL trees.

The parser is robust (if RGL has enough coverage)

Non-CNL input is not a failure, but can be processed
further.

Example: translation
We want to have machine translation that
● delivers publication quality in areas where reasonable

effort is invested
● degrades gracefully to browsing quality in other areas
● shows a clear distinction between these

We do this by using grammars and type-theoretical
interlinguas implemented in GF, Grammatical
Framework

GF translation app in greyscale

GF translation app in full colour

translation by meaning
- correct
- idiomatic

translation by syntax
- grammatical
- often strange
- often wrong

translation by chunks
- probably ungrammatical
- probably wrong

 word to word transfer

 syntactic transfer

semantic interlingua

The Vauquois triangle

 word to word transfer

 syntactic transfer

semantic interlingua

The Vauquois triangle

What is it good for?

 get an idea

 get the grammar right

 publish the content

Who is doing it?

 Google, Bing, Apertium

 GF the last 15 months

 GF in MOLTO

What should we work on?

chunks for robustness and speed

 syntax for grammaticality

 semantics for full quality and speed

All!

We want a system that
● can reach perfect quality
● has robustness as back-up
● tells the user which is which

We “combine GF, Apertium, and Google”

But we do it all in GF!

How to do it?

 a brief summary

 translator

chunk grammar

resource grammar

CNL grammar

How much work is needed?

 translator

chunk grammar

resource grammar

CNL grammars

 resource grammar

● morphology
● syntax
● generic lexicon
precise linguistic knowledge
manual work can’t be escaped

CNL grammars

domain semantics, domain idioms
● need domain expertise
use resource grammar as library
● minimize hand-hacking

the work never ends
● we can only cover some domains

chunk grammar

words
suitable word sequences
● local agreement
● local reordering
easily derived from resource grammar
easily varied
minimize hand-hacking

 translator
PGF run-time system
● parsing
● linearization
● disambiguation
generic for all grammars
portable to different user interfaces
● web
● mobile

Disambiguation?
Grammatical: give priority to green over
yellow, yellow over red

Statistical: use a distribution model for
grammatical constructs (incl. word senses)

Interactive: for the last mile in the green zone

Advantages of GF

Expressivity: easy to express complex rules
● agreement
● word order
● discontinuity
Abstractions: easy to manage complex code
Interlinguality: easy to add new languages

Resources: basic and bigger

 Norwegian Danish Afrikaans

Maltese

Romanian Catalan

 Polish Estonian

Russian

 Latvian Thai Japanese Urdu Punjabi Sindhi

 Greek Nepali Persian

English Swedish German Dutch

French Italian Spanish

 Bulgarian Finnish

 Chinese Hindi

How to do it?

 some more details

Translation model: multi-source multi-target compiler

Translation model: multi-source multi-target compiler-decompiler

Abstract Syntax

 Hindi

Chinese

Finnish

Swedish

English

Spanish

German

French

Bulgarian Italian

Word alignment: compiler

 1 + 2 * 3

00000011 00000100 00000101 01101000 01100000

Abstract syntax

Add : Exp -> Exp -> Exp
Mul : Exp -> Exp -> Exp
E1, E2, E3 : Exp

Add E1 (Mul E2 E3)

Concrete syntax

abstrakt Java JVM
Add x y x “+” y x y “01100000”
Mul x y x “*” y x y “01101000”
E1 “1” “00000011”
E2 “2” “00000100”
E3 “3” “00000101”

Compiling natural language
Abstract syntax
 Pred : NP -> V2 -> NP -> S
 Mod : AP -> CN -> CN
 Love : V2
Concrete syntax: English Latin
 Pred s v o s v o s o v
 Mod a n a n n a
 Love “love” “amare”

Word alignment

the clever woman loves the handsome man

femina sapiens virum formosum amat

Pred (Def (Mod Clever Woman)) Love
 (Def (Mod Handsome Man))

Linearization types
 English Latin
 CN {s : Number => Str} {s : Number => Case => Str ; g : Gender}
 AP {s : Str} {s : Gender => Number => Case => Str}

 Mod ap cn
 {s = \\n => ap.s ++ cn.s ! n} {s = \\n,c => cn.s ! n ! c ++ ap.s ! cn.g ! n ! c ;
 g = cn.g
 }

Abstract syntax trees
my name is John

HasName I (Name “John”)

Abstract syntax trees
my name is John

HasName I (Name “John”)

Pred (Det (Poss i_NP) name_N)) (NameNP “John”)

Abstract syntax trees
my name is John

HasName I (Name “John”)

Pred (Det (Poss i_NP) name_N)) (NameNP “John”)

[DetChunk (Poss i_NP), NChunk name_N, copulaChunk,
NPChunk (NameNP “John”)]

Building the yellow part

Building a basic resource grammar

Programming skills
Theoretical knowledge of language
3-6 months work
3000-5000 lines of GF code
- not easy to automate
+ only done once per language

Building a large lexicon
Monolingual (morphology + valencies)
● extraction from open sources (SALDO etc)
● extraction from text (extract)
● smart paradigms
Multilingual (mapping from abstract syntax)
● extraction from open sources (Wordnet, Wiktionary)
● extraction from parallel corpora (Giza++)

Manual quality control at some point needed

Improving the resources
Multiwords: non-compositional translation
● kick the bucket - ta ner skylten
Constructions: multiwords with arguments
● i sötaste laget - excessively sweet
Extraction from free resources (Konstruktikon)
Extraction from phrase tables
● example-based grammar writing

Building the green part

Define semantically based abstract syntax
 fun HasName : Person -> Name -> Fact

Define concrete syntax by mapping to resource
grammar structures
 lin HasName p n = mkCl (possNP p name_N) y
 my name is John
 lin HasName p n = mkCl p heta_V2 y
 jag heter John
 lin HasName p n = mkCl p (reflV chiamare_V) y
 (io) mi chiamo John

Resource grammars give crucial help
● CNL grammarians need not know linguistics
● a substantial grammar can be built in a few

days
● adding new languages is a matter of a few

hours

MOLTO’s goal was to make this possible.

Automatic extraction of CNLs?

● abstract syntax from ontologies
● concrete syntax from examples

○ including phrase tables

As always, full green quality needs expert
verification

● formal methods help (REMU project)

These grammars are a source of
● “non-compositional” translations
● compile-time transfer
● idiomatic language
● translating meaning, not syntax

Constructions are the generalized form of this
idea, originally domain-specific.

Building the red part

1. Write a grammar that builds sentences
from sequences of chunks
 cat Chunk
 fun SChunks : [Chunk] -> S

2. Introduce chunks to cover phrases

 fun NP_nom_Chunk : NP -> Chunk
 fun NP_acc_Chunk : NP -> Chunk
 fun AP_sg_masc_Chunk : AP -> Chunk
 fun AP_pl_fem_Chunk : AP -> Chunk

Do this for all categories and feature
combinations you want to cover.

Include both long and short phrases
● long phrases have better quality
● short phrases add to robustness

Give long phrases priority by probability
settings.

Long chunks are better:

 [this yellow house] - [det här gula huset]

 [this] [yellow house] - [den här] [gult hus]

 [this] [yellow] [house] - [den här] [gul] [hus]

Limiting case: whole sentences as chunks.

Accurate feature distinctions are good,
especially between closely related language
pairs.

 god bon buono
 good gott bonne buona
 goda bons buoni
 bonnes buone

Apertium does this for every language pair.

Resource grammar chunks of course come
with reordering and internal agreement
 Prep Det+Fem+Sg N+Fem+Sg A+Fem+Sg
 dans la maison bleue

 im blauen Haus
 Prep-Det+Neutr+Sg+Dat A+Weak+Dat N+Neutr+Sg

Recall: chunks are just a by-product of the
real grammar.

Their size span is

 single words <---> entire sentences

A wide-coverage chunking grammar can be
built in a couple of hours by using the
RGL.

 Building the
 translation system

 GF
 source

 GF
 source

 probability
 model

 GF
 source

 probability
 model

 PGF
 binary

GF
compiler

 PGF
 binaryPGF runtime

system

 PGF
 binaryPGF runtime

system

user interface

 PGF
 binaryPGF runtime

system

user interface

 another
 PGF
 binary

 PGF
 binaryPGF runtime

system

user interface

 another
 PGF
 binary

 CNL

 PGF
 binaryPGF runtime

system

user interface

 another
 PGF
 binary

another
CNL

 PGF
 binaryPGF runtime

system

 custom user interface

generic
user interface

PGF runtime
system

 generic
 grammar

CNL

White: free, open-source. Green: a business idea (Digital Grammars)

User interfaces

command-line
shell
web server
web applications
mobile applications

 Demos

To test it yourself

Android app

 http://www.grammaticalframework.org/demos/app.html

Web app

http://www.grammaticalframework.org/demos/translation.html

http://www.grammaticalframework.org/demos/app.html
http://www.grammaticalframework.org/demos/translation.html
http://www.grammaticalframework.org/demos/translation.html

 Take home

Implementing CNL in GF using RGL
● less work and linguistic expertise
● multilinguality (29 languages)

Embedding CNL in RGL
● robustness
● confidence control

On-going effort: translation
● CNL as semantic model
● contributions wanted to lexicon etc!

Other CNL applications: to do!

