
Grammatical Framework
Programming with Multilingual Grammars

With a Special Focus on Chinese

Sun Yat-Sen University, Guangzhou
23-27 September 2013

Aarne Ranta
http://www.cse.chalmers.se/~aarne/

@

Monday, September 23, 13

http://www.cse.chalmers.se/~aarne/
http://www.cse.chalmers.se/~aarne/

Monday, September 23, 13

The goals of this course
• writing multilingual grammars

• using them for

• translation

• human-computer interaction

• running them

• in web applications

• on mobile phones (Android, iOS)

Monday, September 23, 13

A specific goal

• Improve the grammar for Chinese

★ Enable English-Chinese translation

★ Build language learning applications

• Currently 6,000 words in Chinese

★ Can we reach 20,000 words?

Monday, September 23, 13

Course assignment

• Either

• add 500 new Chinese words

• Or

• build a GF application

Monday, September 23, 13

Schedule
Monday lecture 13-15 (19:00 - 21:35)

 Tuesday lab 1-2 (8:00- 9:40), lecture 7-8 (13:30 - 15:10)

 Wednesday lab1-2 (8:00- 9:40)

 Thursday lecture 1-2 (8:00- 9:40), lab 13-15 (19:00 - 21:35)

 Friday lab 10-11 (16:15 - 17:55)

Monday, September 23, 13

GF = Grammatical Framework

• a programming language for grammars

• so are YACC and Bison

• but GF is also for natural languages

• compiling natural language

Monday, September 23, 13

Focus of GF

• Like compilers, unlike e.g. Google translate

• precision

• high quality

• grammatical correctness

• meaning preservation

Monday, September 23, 13

History of GF

• Started at Xerox Research in 1998

• now open-source, 100+ developers

• European projects: WebALT, MOLTO,
Monnet

• Companies: Ontotext (Bulgaria), Be
Informed (Holland), Lingsoft (Finland),
Galois (USA)

• 100+ publications, 10+ PhD theses

Monday, September 23, 13

The GF Book

• CSLI, Stanford, 2011

• Soon available in
Chinese translation by
Prof. Yan Tian of Jiao
Tong University,
Shanghai

Monday, September 23, 13

语法框架

为多种自然语言语法编程
Grammatical Framework

 Programming with Multilingual Grammars

[瑞典] Aarne Ranta 著

田艳译

上海交通大学出版社

Shanghai Jiao Tong University Press Co., Limited

上海·SHANGHAI

内容简介

Monday, September 23, 13

语法框架是一种计算机编程语言，专为编写自然语言的语法而设计，它有
能力并行处理多种自然语言。本书全面介绍和展示了如何用语法框架编写
自然语言的语法，以及如何在一些实用系统，比如常用语系统，口语对话
系统以及自然语言界面系统中加以应用。书中的例子和练习涉及多种自然
语言。读者可以从中知晓如何从计算语言学的视角看待自己的母语。

阅读本书不需要语言学的预备知识，因此，特别适合计算机科学家和程序
员。同样，语言学家也会对本书产生兴趣，因为本书从计算机程序语言的
视角启示了处理多种自然语言语法的新途径。

Monday, September 23, 13

How to translate these?

I ate bread with butter

I ate bread with you

Monday, September 23, 13

What I get from Google translate

I ate bread with butter.

我吃面包，黄油。

I ate bread with you.

我吃了面包与你同在。

Monday, September 23, 13

What I get from GF

I ate bread with butter

我吃了和黄油一起的面包

I ate bread with you

我在和你一起吃了面包

Monday, September 23, 13

Actually I could also get

 I ate bread with butter

我在和黄油一起吃了面包

I ate bread with you

我吃了和你一起的面包

Monday, September 23, 13

Structural ambiguity

I ate (bread (with butter))

I ((ate bread) (with friends))

Monday, September 23, 13

Familiar from mathematics

two plus three times four

2 + 3 * 4 = 14 // = 2 + (3 * 4)

(2 + 3) * 4 = 20

Monday, September 23, 13

Different syntax trees

Monday, September 23, 13

Order vs. structure

• English:

• Subject Verb (Object Adverb) -> Subject Verb Object Adverb

• Subject (Verb Object Adverb) -> Subject Verb Object Adverb

• Chinese:

• Subject Verb (Object Adverb) -> Subject Verb Adverb Object

• Subject (Verb Object Adverb) -> Subject Adverb Verb Object

Monday, September 23, 13

Word alignments

Monday, September 23, 13

Compilers: aligning Java and JVM

Monday, September 23, 13

The principle of compilers (and GF)

Translate via abstract syntax

• shared, underlying tree structure

Languages differ in concrete syntax

• conversion of trees into strings

Monday, September 23, 13

An example of GF
Abstract syntax: tree construction function
for multiplication expressions

 fun EMul : Exp -> Exp -> Exp

Concrete syntax: linearization to Java

 lin EMul x y = x ++ "*" ++ y

Concrete syntax: linearization to JVM

 lin EMul x y = x ++ y ++ "imul"

Monday, September 23, 13

Natural language in GF

Categories: types of expressions

• S sentence e.g. I eat rice 我吃饭

• NP noun phrase e.g. I 我

• VP verb phrase e.g. eat rice 吃饭

• V verb e.g. eat 吃

Monday, September 23, 13

Abstract syntax functions
Predication, complementation, and a couple of
words:

fun

 Pred : NP -> VP -> S

 Compl : V -> NP -> VP

 I : NP

 Eat : V

 Rice : NP

Monday, September 23, 13

Building an abstract syntax tree

We apply functions Compl and Pred:

 Compl Eat Rice : VP

 Pred I (Compl Eat Rice): S

Graphical version of the syntax tree:

Monday, September 23, 13

Concrete syntax: linearization to English

lin

 Pred np vp = np ++ vp

 Compl v2 np = v2 ++ np

 I = "I"

 Rice = "rice"

 Eat = "eat"

The symbol ++ means concatenation.

Monday, September 23, 13

Now we can linearize:

 Pred I (Compl Eat Rice)

 = "I" ++ ("eat" ++ "rice")

 = "I eat rice"

Monday, September 23, 13

Concrete syntax: linearization to Chinese

lin

 Pred np vp = np ++ vp

 Compl v2 np = v2 ++ np

 I = "我"

 Rice = "饭"
 Eat = "吃"

Monday, September 23, 13

Now we can linearize:

 Pred I (Compl Eat Rice)

 = "我" ++ ("吃" ++ "饭")

 = "我 吃 饭"

Notice: spaces needed in English, should be
removed in Chinese. We will return to this.

Monday, September 23, 13

Using GF grammars

We want to use grammars

• in the GF shell

• in a web application

To do so, we

• write the grammars in .gf files

• compile the grammars

Monday, September 23, 13

Abstract syntax file: Basic.gf
abstract Basic = { -- module header

flags startcat = S ; -- setting start category

cat -- categories

 S ; -- separated by semicolons

 NP ;

 VP ;

 V ;

fun -- functions

 Pred : NP -> VP -> S ;

 Compl : V -> NP -> VP ;

 I : NP ;

 Rice : NP ;

 Eat : V ; -- two dashes start a comment

}

Monday, September 23, 13

Concrete syntax file: BasicEng.gf

concrete BasicEng of Basic = { -- module header

lincat -- linearization types of cat’s

 S = Str ;

 NP = Str ;

 VP = Str ;

 V = Str ;

lin -- linearization rules of fun’s

 Pred np vp = np ++ vp ;

 Compl v np = v ++ np ;

 I = "I" ;

 Rice = "rice" ;

 Eat = "eat" ;

}

Monday, September 23, 13

Concrete syntax: BasicChi.gf
concrete BasicChi of Basic = {

flags coding = utf8 ; -- set non-latin character encoding

lincat -- the rest is exactly as in English...

 S = Str ;

 NP = Str ;

 VP = Str ;

 V = Str ;

lin

 Pred np vp = np ++ vp ;

 Compl v np = v ++ np ;

 I = "我" ; -- ...except the words

 Rice = "饭" ;

 Eat = "吃" ;

}

Monday, September 23, 13

Using the GF shell

1. Go to GF Download page to install GF:

 http://www.grammaticalframework.org/download

2. Install GF (Linux, Mac OS, Windows)

3. Open the GF shell in your OS shell:

 gf

4. Import the files you want

 import BasicChi.gf BasicEng.gf

5. Parse, linearize, generate, translate,...

Monday, September 23, 13

http://www.grammaticalframework.org/download/index.html
http://www.grammaticalframework.org/download/index.html

Example GF shell session
• Import grammars

> import BasicChi.gf BasicEng.gf
linking ... OK
Languages: BasicChi BasicEng

• Parse English string into tree
Basic> parse -lang=Eng "I eat rice"

Pred I (Compl Eat Rice)

• Linearize tree into Chinese
Basic> linearize -lang=Chi Pred I (Compl Eat Rice)

我 吃 饭

• Parse Chinese, linearize to English
Basic> parse -lang=Chi "我 吃 饭" | linearize -lang=Eng
I eat rice

• Generate random tree, linearize to both languages
Basic> generate_random | linearize

饭 吃 我
rice eats I

Monday, September 23, 13

About GF shell commands

• parse maps strings to trees

• linearize maps trees to strings

• -lang=XXX sets language (default: all)

• pipe | sends output to next command

• translate: parse | linearize

• generate_random builds random trees

• test: generate_random | linearize

Monday, September 23, 13

Testing a grammar

We already found an error in English:
 Basic> generate_random | linearize

 饭 吃 我

 rice eats I

This should be
 rice eats me

We will return to this.

Monday, September 23, 13

Web applications
1. Compile to pgf = Portable Grammar Format
aarne$ gf -make BasicChi.gf BasicEng.gf
linking ... OK
Writing Basic.pgf...

2. Start GF in server mode
aarne$ gf -server

Document root = /Users/aarne/Library/Haskell/ghc-7.4.2/lib/gf-3.5/
share/www

Starting HTTP server, open http://localhost:41296/ in your web browser.

3. Copy Basic.pgf to <document root>/grammars/

4. Open the link in Firefox - you get to GF Cloud

5. Select Minibar -> Grammar:Basic.pgf

Monday, September 23, 13

http://localhost:41296
http://localhost:41296

There are many cloud services available for GF grammars

The Minibar is a “fridge magnet” based editor

Monday, September 23, 13

The easiest way to use GF

Cloud service on GF server:

 http://cloud.grammaticalframework.org/

Select GF online editor for simple multilingual grammars to work
in GF without installing anything!

Monday, September 23, 13

http://cloud.grammaticalframework.org
http://cloud.grammaticalframework.org
http://localhost:41296/gfse/
http://localhost:41296/gfse/

★ At this point, we will do some
cloud work on translating,
generating, grammar testing, and
language training.

Monday, September 23, 13

The power of GF

• shared abstract syntax

• different words

• different word orders

• translate A to B = parse A | linearize B

• works for any number of languages

Monday, September 23, 13

The problem with English

• Western languages have inflection: words
have many forms

• Chi 吃 ; Eng eat, eats, ate, eaten, eating

• Inflection is used in agreement: the form
chosen depends on other words

• Chi 我 吃, 他吃 ; Eng I eat, he eats

• How can we do this in GF?

Monday, September 23, 13

Parameters and tables
We linearized V (and VP) as strings:

 lincat V = Str

We can change this to a table, a.k.a. a
finite function:

 lincat V = Number => Str

It depends on a parameter:

 param Number = Sg | Pl

Now every verb has two forms:

 lin Eat =

 table {Sg => "eats"; Pl => "eat"}
Monday, September 23, 13

Records

The form of a verb is determined by the subject
NP.

Therefore, an NP has an inherent number. It is
stored in a record:

 lincat NP = {s : Str ; n : Number}

 lin I = {s = "I" ; n = Pl}

 lin Rice = {s = "rice" ; n = Sg}

Sg = Singular, Pl = Plural.

Monday, September 23, 13

Agreement

The inherent number of NP is passed to the VP,
to select the proper form:

 lin Pred np vp = np.s ++ vp ! np.n

Read this:

The string of the NP followed by the form of the VP
selected for the number of the NP.

Monday, September 23, 13

The complete code
param

 Number = Sg | Pl ;

lincat

 S = Str ;

 NP = {s : Str ; n : Number} ;

 VP = Number => Str ;

 V = Number => Str ;

lin

 Pred np vp = np.s ++ vp ! np.n ;

 Compl v np = table {n => v ! n ++ np.s} ;

 I = {s = "I" ; n = Pl} ;

 Rice = {s = "rice" ; n = Sg} ;

 Eat = table {Sg => "eats" ; Pl => "eat"} ;

Monday, September 23, 13

One problem solved

The form of the verb gets right now:
 Pred Rice (Compl Eat I)

-> rice ++

 (table {Sg => "eats" ; Pl => "eat"} ! Sg ++ "I")

-> "rice eats I"

But how to get rice eats me ?

Monday, September 23, 13

Just another parameter

Noun phrase forms depend on case:
 param Case = Nom | Acc

 lincat NP = {s : Case => Str ; n : Number}

 lin I = {s = table {Nom => "I" ; Acc => "me"} ; n = Pl}

 lin Rice = {s = table {_ => "rice"} ; n = Sg}

Nom = Nominative, Acc = Accusative.

_ => means “for all values of the parameter”.

Monday, September 23, 13

Putting the case parameter in place
concrete BasicEng of Basic = {

param

 Number = Sg | Pl ;

 Case = Nom | Acc ;

lincat

 S = Str ;

 NP = {s : Case => Str ; n : Number} ;

 VP = Number => Str ;

 V = Number => Str ;

lin

 Pred np vp = np.s ! Nom ++ vp ! np.n ;

 Compl v np = \\n => v ! n ++ np.s ! Acc ;

 I = {s = table {Nom => "I" ; Acc => "me"} ; n = Pl} ;

 Rice = {s = table {_ => "rice"} ; n = Sg} ;

 Eat = table {Sg => "eats" ; Pl => "eat"} ;

}

This is the final, correct version of BasicEng.gf.

Monday, September 23, 13

Adverbs

Adverbs: modifiers of verbs (and other
expressions as well:

 with butter, in the house, tomorrow

In Chinese, adverbs come before the
modified expression.

In English, they come after.

Chinese also has to add some extra words.

Monday, September 23, 13

Adding adverbs to Basic

Abstract syntax
 AdvVP : VP -> Adv -> VP

 AdvNP : NP -> Adv -> NP

Concrete syntax, English
 AdvVP vp adv = table {n => vp ! n ++ adv}

 AdvNP np adv =

 {s = table {c => np.s ! c ++ adv} ; n = np.n}

Concrete syntax, Chinese
 AdvVP vp adv = "在" ++ adv ++ vp

 AdvNP np adv = adv ++ "的" ++ np

Monday, September 23, 13

Forming adverbs

The most productive way: preposition + NP
 With : NP -> Adv

 Without : NP -> Adv

English:
 With np = "with" ++ np.s ! Acc

 Without np = "without" ++ np.s ! Acc

Chinese:
 With np = "和" ++ np ++ "一 起"

 Without np = "没 有" ++ np

NB. there are many other translations of with.

Monday, September 23, 13

Trying out word order with adverbs
Basic> p -lang=Eng "I eat bread with butter" | l -treebank

1. Basic: Pred I (AdvVP (Compl Eat Bread) (With Butter))

BasicChi: 我 在 和 黄 油 一 起 吃 面 包

BasicEng: I eat bread with butter

2. Basic: Pred I (Compl Eat (AdvNP Bread (With Butter)))

BasicChi: 我 吃 和 黄 油 一 起 的 面 包

BasicEng: I eat bread with butter

Basic> p -lang=Eng "I eat bread with you" | l -treebank

1. Basic: Pred I (AdvVP (Compl Eat Bread) (With You))

BasicChi: 我 在 和 你 一 起 吃 面 包

BasicEng: I eat bread with you

2. Basic: Pred I (Compl Eat (AdvNP Bread (With You)))

BasicChi: 我 吃 和 你 一 起 的 面 包

BasicEng: I eat bread with you

Monday, September 23, 13

Ambiguity
• A string that parses to many trees is

ambiguous

• This is one of the main problems of NLP
(=Natural Language Processing)

• Example: translation from English to Chinese
needs disambiguation.

• syntactic ambiguity: whether the
Adv modifies NP or VP

• lexical ambiguity: many senses of
with

Monday, September 23, 13

Addressing lexical ambiguity

1. Define a separate abstract syntax function
for each sense
 With : NP -> Adv

 With_company : NP -> Adv

2. Linearizations of each sense may or may
not be different
 Chinese: With np = "和" ++ np ++ "一 起"

 With_company np = "跟" ++ np

 English: With_company np = "with" ++ np

3. Try to pick the tree with the right sense

Monday, September 23, 13

Basic> p -lang=Eng "I eat rice with you" | l -treebank

1. Basic: Pred I (AdvVP (Compl Eat Rice) (With You))

BasicChi: 我 在 和 你 一 起 吃 饭

BasicEng: I eat rice with you

2. Basic: Pred I (AdvVP (Compl Eat Rice) (With_company You))

BasicChi: 我 在 跟 你 吃 饭

BasicEng: I eat rice with you

3. Basic: Pred I (Compl Eat (AdvNP Rice (With You)))

BasicChi: 我 吃 和 你 一 起 的 饭

BasicEng: I eat rice with you

4. Basic: Pred I (Compl Eat (AdvNP Rice (With_company You)))

BasicChi: 我 吃 跟 你 的 饭

BasicEng: I eat rice with you

Monday, September 23, 13

Morphology

• the study of different forms of words

• in Western languages, a word can have
thousands of forms

★ in English, at most 5; in Finnish, up to 10k

• we don’t want to write all forms in the
grammar, but define functions that
produce them

• morphological function = paradigm

Monday, September 23, 13

English regular verb paradigm
resource English = {

param

 VForm = Inf | Pres | Past | PastPart | PresPart ;

oper

 regV : Str -> VForm => Str = \walk -> table {

 Inf => walk ;

 Pres => walk + "s" ;

 Past | PastPart => walk + "ed" ;

 PresPart => walk + "ing"

 } ;

-- examples

 Walk = regV "walk" ;

 Annoy = regV "annoy" ;

 Reject = regV "reject" ;

}

Monday, September 23, 13

Almost regular verbs

Ending with s, sh, x, z,...:

 kiss, kisses, kissed, kissed, kissing

Ending with e:

 use, uses, used, used, using

Ending with y:

 cry, cries, cried, cried, crying

Except if preceded by a vowel:

 play, plays, played, played, playing

Ending with vowel + consonant:

 wrap, wraps, wrapped, wrapped, wrapping

Monday, September 23, 13

Smart paradigms
Functions with regular expression pattern
matching:
 smartV : Str -> VForm => Str = \s -> case s of {

 _ + ("s"|"sh"|"x") =>

 table VForm [s ; s+"es" ; s+"ed" ; s+"ed" ; s+"ing"] ;

 x + "e" =>

 table VForm [s ; s+"s" ; s+"d" ; s+"d" ; x+"ing"] ;

 _ + ("a"|"e"|"o"|"u") + "y"

 => regV s ;

 x + "y" =>

 table VForm [s ; x+"ies" ; x+"ied" ; x+"ied" ; s+"ing"] ;

 _ =>

 regV s

 }

Monday, September 23, 13

What we have shown so far

• GF can define grammatical correctness

• GF can relate many languages via abstract
syntax

• GF can be run in the shell, to develop and
test grammars

• GF can be run on the web, to build end-
used applications

Monday, September 23, 13

What we have not shown yet

• GF supports big grammars

• GF supports disambiguation

• GF grammars can be written without
knowing the target language

• GF grammars can be combined with
statistics

• GF grammars can be run on mobile devices

• GF grammars support speech and dialogue
applications

Monday, September 23, 13

Plan for tomorrow
Lab 8-9.40

• get everyone started with GF installation

• complete the Basic grammar with some
useful things

Lecture 13:30-15:10

• introduce the GF Resource Grammar
Library (RGL)

• show how RGL helps language learning

• show how to write big grammars, even
without knowing the target language

Monday, September 23, 13

