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The goals of this course
• writing multilingual grammars

• using them for 

• translation

• human-computer interaction

• running them

• in web applications

• on mobile phones (Android, iOS)
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A specific goal

• Improve the grammar for Chinese

★ Enable English-Chinese translation

★ Build language learning applications

• Currently 6,000 words in Chinese

★ Can we reach 20,000 words?
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Course assignment

• Either

• add 500 new Chinese words

• Or

• build a GF application
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Schedule
Monday    lecture 13-15 (19:00 - 21:35)

   Tuesday   lab 1-2 (8:00- 9:40),  lecture 7-8 (13:30 - 15:10)

  Wednesday lab1-2 (8:00- 9:40)

        Thursday  lecture 1-2 (8:00- 9:40), lab 13-15 (19:00 - 21:35)

         Friday    lab 10-11 (16:15 - 17:55)
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GF = Grammatical Framework

• a programming language for grammars

• so are  YACC and Bison

• but GF is also for natural languages

• compiling natural language
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Focus of GF

• Like compilers, unlike e.g. Google translate

• precision

• high quality

• grammatical correctness

• meaning preservation
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History of GF

• Started at Xerox Research in 1998

• now open-source, 100+ developers

• European projects: WebALT, MOLTO, 
Monnet

• Companies: Ontotext (Bulgaria), Be 
Informed (Holland), Lingsoft (Finland), 
Galois (USA)

• 100+ publications, 10+ PhD theses
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The GF Book

• CSLI, Stanford, 2011

• Soon available in 
Chinese translation by 
Prof. Yan Tian of Jiao 
Tong University, 
Shanghai
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语法框架

为多种自然语言语法编程
Grammatical Framework

 Programming with Multilingual Grammars

[瑞典] Aarne Ranta 著

田艳译

上海交通大学出版社

Shanghai Jiao Tong University Press Co., Limited

上海·SHANGHAI

内容简介
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语法框架是一种计算机编程语言，专为编写自然语言的语法而设计，它有
能力并行处理多种自然语言。本书全面介绍和展示了如何用语法框架编写
自然语言的语法，以及如何在一些实用系统，比如常用语系统，口语对话
系统以及自然语言界面系统中加以应用。书中的例子和练习涉及多种自然
语言。读者可以从中知晓如何从计算语言学的视角看待自己的母语。

阅读本书不需要语言学的预备知识，因此，特别适合计算机科学家和程序
员。同样，语言学家也会对本书产生兴趣，因为本书从计算机程序语言的
视角启示了处理多种自然语言语法的新途径。
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How to translate these?

I ate bread with butter

I ate bread with you
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What I get from Google translate

I ate bread with butter.

我吃面包，黄油。

I ate bread with you.

我吃了面包与你同在。
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What I get from GF

I ate bread with butter

我吃了和黄油一起的面包

I ate bread with you

我在和你一起吃了面包
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Actually I could also get

 I ate bread with butter

我在和黄油一起吃了面包

I ate bread with you

我吃了和你一起的面包
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Structural ambiguity

I ate (bread (with butter))

I ((ate bread) (with friends))
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Familiar from mathematics

two plus three times four

2 + 3 * 4 = 14    // = 2 + (3 * 4)

(2 + 3) * 4 = 20
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Different syntax trees
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Order vs. structure

• English: 

• Subject Verb (Object Adverb)  -> Subject Verb Object Adverb

• Subject (Verb Object Adverb) -> Subject Verb Object Adverb

• Chinese:

• Subject Verb (Object Adverb)  -> Subject Verb Adverb Object

• Subject (Verb Object Adverb) -> Subject Adverb Verb Object

Monday, September 23, 13



Word alignments

Monday, September 23, 13



Compilers: aligning Java and JVM
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The principle of compilers (and GF)

Translate via abstract syntax

• shared, underlying tree structure

Languages differ in concrete syntax

• conversion of trees into strings
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An example of GF
Abstract syntax: tree construction function 
for multiplication expressions

  fun EMul : Exp -> Exp -> Exp 

Concrete syntax: linearization to Java

    lin EMul x y = x ++ "*" ++ y

Concrete syntax: linearization to JVM

    lin EMul x y = x ++ y ++ "imul"
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Natural language in GF

Categories: types of expressions

• S      sentence         e.g.    I eat rice 我吃饭

• NP   noun phrase    e.g.    I            我

• VP    verb phrase    e.g.    eat rice   吃饭

• V      verb              e.g.    eat         吃
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Abstract syntax functions
Predication, complementation, and a couple of 
words:

fun 

  Pred  : NP -> VP  -> S

  Compl : V  -> NP  -> VP

  I     : NP  

  Eat   : V  

  Rice  : NP
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Building an abstract syntax tree

We apply functions Compl and Pred:

          Compl Eat Rice : VP

  Pred I (Compl Eat Rice): S

Graphical version of the syntax tree:
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Concrete syntax: linearization to English

lin 

  Pred  np vp  = np ++ vp

  Compl v2 np  = v2 ++ np

  I    = "I" 

  Rice = "rice"

  Eat  = "eat"

The symbol ++ means concatenation.
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Now we can linearize:

  Pred I (Compl Eat Rice)

  = "I" ++ ("eat" ++ "rice")

  = "I eat rice"
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Concrete syntax: linearization to Chinese

lin 

  Pred  np vp  = np  ++ vp

  Compl v2 np  = v2  ++ np

  I = "我"

  Rice = "饭"
  Eat = "吃"
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Now we can linearize:

  Pred I (Compl Eat Rice)

  = "我" ++ ("吃" ++ "饭")

  = "我 吃 饭"

Notice: spaces needed in English, should be 
removed in Chinese. We will return to this.
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Using GF grammars

We want to use grammars

• in the GF shell

• in a web application

To do so, we

• write the grammars in .gf files

• compile the grammars
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Abstract syntax file:  Basic.gf
abstract Basic = {                -- module header

flags startcat = S ;              -- setting start category

cat                               -- categories

  S ;                             -- separated by semicolons

  NP ;

  VP ;

  V ;

fun                               -- functions

  Pred  : NP -> VP  -> S ;

  Compl : V  -> NP  -> VP ;

  I : NP ;

  Rice : NP ;

  Eat : V ;                       -- two dashes start a comment

}
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Concrete syntax file:  BasicEng.gf

concrete BasicEng of Basic = {  -- module header

lincat                          -- linearization types of cat’s

  S = Str ;

  NP = Str ;

  VP = Str ;

  V = Str ;

lin                             -- linearization rules of fun’s

  Pred  np vp  = np ++ vp ;

  Compl v  np  = v  ++ np ;

  I = "I" ;

  Rice = "rice" ;

  Eat = "eat" ;

}

Monday, September 23, 13



Concrete syntax:  BasicChi.gf
concrete BasicChi of Basic = {

flags coding = utf8 ;           -- set non-latin character encoding

lincat                          -- the rest is exactly as in English...

  S = Str ;

  NP = Str ;

  VP = Str ;

  V  = Str ;

lin

  Pred  np vp  = np ++ vp ;

  Compl v  np  = v  ++ np ;

  I = "我" ;                   -- ...except the words

  Rice = "饭" ;

  Eat = "吃" ;

}
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Using the GF shell

1. Go to GF Download page to install GF:

   http://www.grammaticalframework.org/download

2. Install GF (Linux, Mac OS, Windows)

3. Open the GF shell in your OS shell:

   gf

4. Import the files you want

 import BasicChi.gf BasicEng.gf

5. Parse, linearize, generate, translate,...
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Example GF shell session
• Import grammars

> import BasicChi.gf BasicEng.gf
linking ... OK
Languages: BasicChi BasicEng

• Parse English string into tree
Basic> parse -lang=Eng "I eat rice"

Pred I (Compl Eat Rice)

• Linearize tree into Chinese
Basic> linearize -lang=Chi Pred I (Compl Eat Rice)

我 吃 饭

• Parse Chinese, linearize to English
Basic> parse -lang=Chi "我 吃 饭" | linearize -lang=Eng
I eat rice

• Generate random tree, linearize to both languages
Basic> generate_random | linearize

饭 吃 我
rice eats I
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About GF shell commands

• parse maps strings to trees

• linearize maps trees to strings

• -lang=XXX sets language (default: all)

• pipe | sends output to next command

• translate: parse | linearize

• generate_random builds random trees

• test: generate_random | linearize
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Testing a grammar

We already found an error in English:
  Basic> generate_random | linearize

  饭 吃 我

  rice eats I

This should be
  rice eats me

We will return to this.
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Web applications
1. Compile to pgf = Portable Grammar Format
aarne$ gf -make BasicChi.gf BasicEng.gf
linking ... OK
Writing Basic.pgf...

2. Start GF in server mode
aarne$ gf -server

Document root = /Users/aarne/Library/Haskell/ghc-7.4.2/lib/gf-3.5/
share/www

Starting HTTP server, open http://localhost:41296/ in your web browser.

3. Copy Basic.pgf to <document root>/grammars/ 

4. Open the link in Firefox - you get to GF Cloud

5. Select Minibar -> Grammar:Basic.pgf

Monday, September 23, 13

http://localhost:41296
http://localhost:41296


There are many cloud services available for GF grammars

The Minibar is a “fridge magnet” based editor
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The easiest way to use GF

Cloud service on GF server:

  http://cloud.grammaticalframework.org/

Select GF online editor for simple multilingual grammars to work 
in GF without installing anything!
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★ At this point, we will do some 
cloud work on translating, 
generating, grammar testing, and 
language training.
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The power of GF

• shared abstract syntax

• different words

• different word orders

• translate A to B = parse A | linearize B

• works for any number of languages
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The problem with English

• Western languages have inflection: words 
have many forms

• Chi 吃 ; Eng eat, eats, ate, eaten, eating

• Inflection is used in agreement: the form 
chosen depends on other words

• Chi 我 吃, 他吃 ; Eng I eat, he eats

• How can we do this in GF?
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Parameters and tables
We linearized V (and VP) as strings:

  lincat V = Str

We can change this to a table, a.k.a. a 
finite function:

  lincat V = Number => Str

It depends on a parameter:

  param Number = Sg | Pl

Now every verb has two forms:

  lin Eat = 

  table {Sg => "eats"; Pl => "eat"}
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Records

The form of a verb is determined by the subject 
NP. 

Therefore, an NP has an inherent number. It is 
stored in a record:

  lincat NP = {s : Str ;    n : Number}

  lin     I = {s = "I" ;    n = Pl}

  lin  Rice = {s = "rice" ; n = Sg}

Sg = Singular, Pl = Plural.
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Agreement

The inherent number of NP is passed to the VP, 
to select the proper form:

  lin Pred np vp = np.s ++ vp ! np.n

Read this:

The string of the NP followed by the form of the VP 
selected for the number of the NP.
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The complete code
param

  Number = Sg | Pl ;

lincat

  S = Str ;

  NP = {s : Str ; n : Number} ;

  VP = Number => Str ;

  V = Number => Str ;

lin

  Pred  np vp  = np.s ++ vp ! np.n ;

  Compl v  np  = table {n => v ! n ++ np.s} ;

  I = {s = "I" ; n = Pl} ;

  Rice = {s = "rice" ; n = Sg} ;

  Eat = table {Sg => "eats" ; Pl => "eat"} ;
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One problem solved

The form of the verb gets right now:
  Pred Rice (Compl Eat I)

-> rice ++ 

   (table {Sg => "eats" ; Pl => "eat"} ! Sg ++ "I")

-> "rice eats I"

But how to get rice eats me ?
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Just another parameter

Noun phrase forms depend on case:
  param Case = Nom | Acc

  

  lincat NP = {s : Case => Str ; n : Number}

  

  lin I = {s = table {Nom => "I" ; Acc => "me"} ; n = Pl}

  lin Rice = {s = table {_ => "rice"} ; n = Sg}

Nom = Nominative, Acc = Accusative.

_ => means “for all values of the parameter”.
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Putting the case parameter in place
concrete BasicEng of Basic = {

param

  Number = Sg | Pl ;

  Case = Nom | Acc ;

lincat

  S = Str ;

  NP = {s : Case => Str ; n : Number} ;

  VP = Number => Str ;

  V = Number => Str ;

lin

  Pred  np vp  = np.s ! Nom ++ vp ! np.n ;

  Compl v  np  = \\n => v ! n ++ np.s ! Acc ;

  I = {s = table {Nom => "I" ; Acc => "me"} ; n = Pl} ;

  Rice = {s = table {_ => "rice"} ; n = Sg} ;

  Eat = table {Sg => "eats" ; Pl => "eat"} ;

}

This is the final, correct version of BasicEng.gf.
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Adverbs

Adverbs: modifiers of verbs (and other 
expressions as well:

  with butter, in the house, tomorrow 

In Chinese, adverbs come before the 
modified expression.

In English, they come after.

Chinese also has to add some extra words.
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Adding adverbs to Basic

Abstract syntax
  AdvVP : VP -> Adv -> VP 

  AdvNP : NP -> Adv -> NP

Concrete syntax, English
  AdvVP vp adv = table {n => vp ! n ++ adv}

  AdvNP np adv = 

    {s = table {c => np.s ! c ++ adv} ; n = np.n}

Concrete syntax, Chinese
  AdvVP vp adv = "在" ++ adv ++ vp

  AdvNP np adv = adv ++ "的" ++ np
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Forming adverbs

The most productive way: preposition + NP
  With    : NP -> Adv

  Without : NP -> Adv

English:
  With np = "with" ++ np.s ! Acc

  Without np = "without" ++ np.s ! Acc

Chinese:
  With np = "和" ++ np ++ "一 起"

  Without np = "没 有" ++ np

NB. there are many other translations of with.
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Trying out word order with adverbs
Basic> p -lang=Eng "I eat bread with butter" | l -treebank

1. Basic: Pred I (AdvVP (Compl Eat Bread) (With Butter))

BasicChi: 我 在 和 黄 油 一 起 吃 面 包

BasicEng: I eat bread with butter

2. Basic: Pred I (Compl Eat (AdvNP Bread (With Butter)))

BasicChi: 我 吃 和 黄 油 一 起 的 面 包

BasicEng: I eat bread with butter

Basic> p -lang=Eng "I eat bread with you" | l -treebank

1. Basic: Pred I (AdvVP (Compl Eat Bread) (With You))

BasicChi: 我 在 和 你 一 起 吃 面 包

BasicEng: I eat bread with you

2. Basic: Pred I (Compl Eat (AdvNP Bread (With You)))

BasicChi: 我 吃 和 你 一 起 的 面 包

BasicEng: I eat bread with you
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Ambiguity
• A string that parses to many trees is 

ambiguous

• This is one of the main problems of NLP 
(=Natural Language Processing)

• Example: translation from English to Chinese 
needs disambiguation. 

• syntactic ambiguity: whether the 
Adv modifies NP or VP

• lexical ambiguity: many senses of 
with
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Addressing lexical ambiguity

1.  Define a separate abstract syntax function 
for each sense
  With         : NP -> Adv

  With_company : NP -> Adv

2.  Linearizations of each sense may or may 
not be different 
  Chinese:  With np         = "和" ++ np ++ "一 起"

            With_company np = "跟" ++ np

  English:  With_company np = "with" ++ np

3.  Try to pick the tree with the right sense
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Basic> p -lang=Eng "I eat rice with you" | l -treebank

1. Basic: Pred I (AdvVP (Compl Eat Rice) (With You))

BasicChi: 我 在 和 你 一 起 吃 饭

BasicEng: I eat rice with you

2. Basic: Pred I (AdvVP (Compl Eat Rice) (With_company You))

BasicChi: 我 在 跟 你 吃 饭

BasicEng: I eat rice with you

3. Basic: Pred I (Compl Eat (AdvNP Rice (With You)))

BasicChi: 我 吃 和 你 一 起 的 饭

BasicEng: I eat rice with you

4. Basic: Pred I (Compl Eat (AdvNP Rice (With_company You)))

BasicChi: 我 吃 跟 你 的 饭

BasicEng: I eat rice with you
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Morphology

• the study of different forms of words

• in Western languages, a word can have 
thousands of forms

★ in English, at most 5; in Finnish, up to 10k

• we don’t want to write all forms in the 
grammar, but define functions that 
produce them

• morphological function = paradigm
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English regular verb paradigm
resource English = {

param 

  VForm = Inf | Pres | Past | PastPart | PresPart ;

oper 

  regV : Str -> VForm => Str = \walk -> table {

    Inf => walk ;

    Pres => walk + "s" ;

    Past | PastPart => walk + "ed" ;

    PresPart => walk + "ing"

    } ;

-- examples

  Walk = regV "walk" ;

  Annoy = regV "annoy" ;

  Reject = regV "reject" ;

}
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Almost regular verbs

Ending with s, sh, x, z,...:

  kiss, kisses, kissed, kissed, kissing

Ending with e:

  use, uses, used, used, using

Ending with y: 

  cry, cries, cried, cried, crying

Except if preceded by a vowel:

  play, plays, played, played, playing

Ending with vowel + consonant:

  wrap, wraps, wrapped, wrapped, wrapping
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Smart paradigms
Functions with regular expression pattern 
matching:
  smartV : Str -> VForm => Str = \s -> case s of {

    _ + ("s"|"sh"|"x") => 

       table VForm [s ; s+"es"  ; s+"ed"  ; s+"ed"  ; s+"ing"] ; 

    x + "e" => 

       table VForm [s ; s+"s"   ; s+"d"   ; s+"d"   ; x+"ing"] ;

    _ + ("a"|"e"|"o"|"u") + "y" 

       => regV s ;

    x + "y" => 

       table VForm [s ; x+"ies" ; x+"ied" ; x+"ied" ; s+"ing"] ;

    _  => 

       regV s

    }
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What we have shown so far

• GF can define grammatical correctness

• GF can relate many languages via abstract 
syntax

• GF can be run in the shell, to develop and 
test grammars 

• GF can be run on the web, to build end-
used applications
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What we have not shown yet

• GF supports big grammars

• GF supports disambiguation

• GF grammars can be written without 
knowing the target language

• GF grammars can be combined with 
statistics

• GF grammars can be run on mobile devices

• GF grammars support speech and dialogue 
applications
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Plan for tomorrow
Lab 8-9.40

• get everyone started with GF installation

• complete the Basic grammar with some 
useful things

Lecture 13:30-15:10

• introduce the GF Resource Grammar 
Library (RGL)

• show how RGL helps language learning

• show how to write big grammars, even 
without knowing the target language
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