
Translation in GF

Aarne Ranta

European Masters, University of Malta, 18-22 March 2013



Plan

GF’s formal potential as a translation system

Domain-specific vs. open-domain translation

Open-domain problems: interlingual lexicon, robustness, disambigua-

tion

Probabilistic GF grammars

Learning GF grammars from data



GF

Multilingual grammar formalism based on type theory and functional
programming

Multilingual grammar = abstract syntax + concrete syntaxes

Parsing: from string to abstract syntax

Linearization: from abstract syntax to string

Translation = parsing followed by linearization

Abstract syntax is interlingua



Potential

GF uses PMCFG = Parallel Multiple Context-Free Grammar

• between context-free and context-sensitive; slightly stronger than

TAG (Tree-Adjoining Grammar)

Efficient runtime (empirically linear parsing)

Probabilistic GF grammars (abstract syntax probabilities)

Robust parsing: recovery from out-of-grammar parts of input



Synchronous grammars

Synchronous CFG: two rhs’s (e.g. English and Latin)

S -> NP VP | NP VP

VP -> V2 NP | NP V2

V2 -> "loves" | "amat"

Multilingual GF grammars: a generalization of synchronous CFG (and

TAG)

• different lincat’s, discontinuous constituents



• this enables a common abstract syntax in ”almost all cases”

• works for all languages so far (26 in the Resource Grammar Li-

brary)



RGL, the Resource Grammar Library

Implemented for 26 languages

Afrikaans Bulgarian Catalan Chinese Danish
Dutch English Finnish French German
Hindi Italian Japanese Latvian Nepali
Norwegian Persian Punjabi Polish Romanian
Russian Sindhi Spanish Swedish Thai
Urdu

In progress: Arabic, Estonian, Greek (Ancient and Modern), Hebrew,

Latin, Maltese, Turkish



Some RGL statistics

40+ contributors 2001-

3-6 months for a new language

3000-5000 lines of GF code per language

Complete morphology engine, comprehensive syntax, test lexicon (500

lemmas)

Larger dictionaries (10k - 100k lemmas) for 10 languages



Lexicon availability

#lines ∼ #lemmas

GF/lib/src$ wc -l */Dict???.gf

53209 bulgarian/DictBul.gf
64782 english/DictEng.gf
42057 finnish/DictFin.gf
92655 french/DictFre.gf
44242 german/DictGer.gf
25845 hindi/DictHin.gf
4147 maltese/DictMlt.gf

135830 russian/DictRus.gf
102884 swedish/DictSwe.gf
23867 turkish/DictTur.gf
15250 urdu/DictUrd.gf



Translation systems of different types

Application grammars

• interlingua based on domain semantics: Like x y

• RGL used as library: Like x y = mkCl x like V2 y

• compile-time transfer: Like x y = mkCl y piacere V2 x

• limited but high quality

Resource grammars

• interlingua based on syntactic structures in the RGL
• structure-to-structure translation
• open-ended, but not full quality



Problems solved in application grammars

Translation via semantics (the top of the Vauquois triangle)

Choice of proper idiom: please to s’il vous plâıt, bitte,...

Ambiguity reduced: bank may only mean the financial institution

Transfer of syntactic structure: I like this to questo mi piace



Current status in GF-based translation

Application grammars dominate: mathematics, painting descriptions,
tourist phrasebook, Attempto controlled language, dialogue systems,
pharmaceutical patents, software specifications, contracts, ...

RGL is used as a library, to make application grammar building easy

• less effort than manual coding (by orders of magnitude)
• no linguistic knowledge required from domain experts

A typical application has 15 languages and 200-500 concepts (i.e.
abstract syntax functions)



Use cases

Production/publication/dissemination quality can be reached by au-
tomatic translation

Broadcasting to many languages

Web interfaces and mobile device app’s (Android, iPhone)

Predictive parsing and syntax editing guide the user to enter trans-
latable input

But this is not what mainstream machine translation does!



What about the other direction

Can we translate uncontrolled input?

Simple idea: resource grammar syntax + large dictionary

Possible refinements: statistical disambiguation, robust parsing, back-

up strategies,...

Let’s try!



Multilingual lexicon

The first problem to solve: what is the abstract syntax

Words don’t match one-to-one between languages

So, what is the abstract syntax?

Thinking of semantics: it is word senses

Thus different fun’s for letter (character) and letter (document)



The Princeton WordNet

A lexical database for English words: http://wordnet.princeton.edu/

Words may have different senses

The senses are organized in hierarchies: synonyms, hypernyms, etc

Synset: set of synonymous words, i.e. a word sense

The 3.0 database contains 155,287 words organized in 117,659 synsets

for a total of 206,941 word-sense pairs (http://en.wikipedia.org/wiki/WordNet)

http://wordnet.princeton.edu/
http://en.wikipedia.org/wiki/WordNet


Linked WordNets

WordNets for other languages, mapping their words to Princeton
senses

Rather complete ones:

• Finnish http://www.ling.helsinki.fi/en/lt/research/finnwordnet/
• Hindi http://www.cfilt.iitb.ac.in/wordnet/webhwn/

Many incomplete, automatically extracted ones: Universal Wordnet
http://www.mpi-inf.mpg.de/yago-naga/uwn/

General observation: 80% of mappings are unproblematic

http://www.ling.helsinki.fi/en/lt/research/finnwordnet/
http://www.cfilt.iitb.ac.in/wordnet/webhwn/
http://www.mpi-inf.mpg.de/yago-naga/uwn/


Using GF with WordNet

Abstract syntax: synsets (word sense id’s)

Concrete syntax: lemma from WordNet + inflection by GF morphol-

ogy

Choose the most frequent synonym (if you have data for this)

If a synonym doesn’t exist, use a hypernym

• octopus, squid, cuttlefish -> bläckfisk (”cephalopod”)



Robustness by metavariables

If parsing fails, e.g. with unknown words, the parser tries to fill in a

metavariable (placeholder, unknown subtree)

p "he ate a ftira"

UseCl Past (Pred he_NP (Compl eat_V2 ?))

The easiest way to solve this is to return the original word in trans-

lation

er ass ein ftira



(Related case: if there’s no German linearization, return the English

word)

Metavariables can also occur in nodes that the construction doesn’t

parse:

p "her he loves"

UseCl Present (? she_NP he_NP love_V2)

There’s no complete theory about how to handle these yet.



Disambiguation, the problem

Different senses of a word may translate to different words

• this number is even -> diese Zahl ist gerade

• this surface is even -> diese Fläche ist eben

Different syntactic structures may have different linearizations

• I ate (a pizza with shrimps) -> j’ai mange une pizza aux crevettes

• I (ate a pizza with shrimps) -> j’ai mange une pizza avec des

amis



Word-sense disambiguation, grammar-based

A simple solution, using fine categorization

cat

Number ;

Surface ;

Proposition ;

fun

EvenNum : Number -> Proposition ;

EvenSur : Surface -> Proposition ;



A more powerful solution, using dependent types to express selec-

tional restrictions:

cat

Class ;

Term (c : Class) ;

Property (c : Class) ;

Proposition ;

fun

Number, Surface : Class ;

Pred : (c : Class) -> Term c -> Property c -> Proposition ;

EvenNum : Property Number ;

EvenSur : Property Surface ;



Word-sense disambiguation, statistical

Target language n-grams with wrong senses of words are rare.

Test this in Google translate!

Also, what happens when the distance gets larger.

(Also test syntactic disambiguation with prepositions.)



Syntax disambiguation

Syntactic parsing easily gives thousands of trees

Statistical disambiguation: rank with tree probabilities

Estimate probabilities from treebanks

Penn Treebank: http://www.cis.upenn.edu/˜treebank/

• a set of 40k manually parsed sentences from Wall Street Journal

• converted to GF RGL abstract trees (Angelov 2012)

http://www.cis.upenn.edu/~{}treebank/


Tree probability in CFG

Probabilistic CFG: each rule has a probability

S -> NP VP -- 0.9

VP -> V2 NP -- 0.3

NP -> "John" -- 0.1

NP -> "beer" -- 0.1

V2 -> "likes" -- 0.1

Sentence probability = tree probability = product of rule probabilities

p(John likes beer) = p((s (NP john) (VP (V2 likes) (NP beer))))

= 0.9 * 0.1 * 0.3 * 0.1 * 0.1 = 0.00027



Tree probability in GF

Probabilistic GF: each abstract syntax function has a probability

Pred : NP -> VP -> S -- 0.9

Compl : V2 -> NP -> VP -- 0.3

John : NP -- 0.1

Beer : NP -- 0.1

Like : V2 -- 0.1

Works the same way as probabilistic CFG:

p(John likes beer) = p(Pred John (Compl Like Beer))

= 0.9 * 0.1 * 0.3 * 0.1 * 0.1 = 0.00027



How to estimate probabilities

Frequencies of nodes in treebanks (sum to 1 per category)

But: there are no treebanks for many languages

In GF, one can port tree probabilities from one language to another, if

the abstract trees are shared! (This is of course just an approximation.

It should work better for semantics than for fluency.)

Advantage over PCFG: more abstract trees -> less sparse data



A problem

p(John likes beer) = p(beer likes John)

This is because the probabilities are context-free.

Could be improved by

• using ”n-grams of tree nodes”

• dependent type probabilities (a research topic)



Learning GF grammars from data

Idea:

1. parse with resource grammar

2. recognize a construction (a frequent abstract tree pattern)

3. introduce a special rule for it

4. recognize the same construction in parallel data

This generalizes the recognition of phrases in phrase-based SMT



Abstracting out a construction

Data:

John is five years old Pred John (ComplAP (Mod (Num 5 Year) Old))

they are seventy years old Pred They (ComplAP (Mod (Num 70 Year) Old))

I am fifteen years old Pred I (ComplAP (Mod (Num 15 Year) Old))

repeated pattern: Pred x (ComplAP (Mod (Num y Year) Old))

Construction

fun YearsOld : NP -> Numeral -> Cl

lin YearsOld x y = Pred x (ComplAP (Mod (Num y Year) Old))



Translating a construction

English-French data:

John is five years old John a cinq ans
they are seventy years old ils ont soixante-dix ans
I am fifteen years old j’ai quinze ans
repeated pattern: Pred x (ComplV2 Avoir (Num y An))

Construction

lin YearsOld x y = Pred x (ComplV2 Avoir (Num y An))



Translating with a construction

Add the new rules to the RGL

More ambiguity in parsing:

she is twenty years old ->

Pred She (ComplAP (Mod (Num 20 Year) Old))

YearsOld She 20

However, the special construction gets a higher probability.

* elle est vieille de vingt ans

elle a vingt ans


