
Parametrized Modules in Grammar Engineering

Aarne Ranta

Colloquium in Honor of Gérard Huet, Paris 22-23 June 2007

Plan

Grammar formalisms as programming languages

Overview of GF

The module system of GF

Parametrized modules

Linguistic result: interlingua vs. transfer

Linguistic result: language families

I Grammar formalisms as programming languages

Grammar Formalisms

Languages for defining grammars

Used by compiler writers: BNF, EBNF, YACC,...

Used by linguists: DCG, PATR, HPSG, LFG, TAG, CCG, GSL, XFST, IG, Regulus,
ACG, HOG, GF,...

What is a formalism? A double view

Low level

• machine language / mathematical model
• austere, non-redundant
• easy to implement / reason about

High level

• tool for programming
• rich, redundant
• easy to program in
• redundancy gives safety (e.g. static type checking)

How grammar formalisms are viewed

Focus on low level, because of

• need to settle questions of complexity and expressivity
• heritage of old languages (Lisp and Prolog)
• few users, who are experts

Static checking is rare

Generalizations via macros and file includes

At the same time, linguists love abstractions and generalizations!

Growing demand for grammars

Areas:

• information retrieval
• software localization
• speech-based interfaces

Non-linguist programmers need to write grammars

This requires

• high-level languages
• static checking
• libraries

From low to high level of language

Starting point: machine code

• repetitive code
• copy and paste

From low to high level of language

Starting point: machine code

• repetitive code
• copy and paste

First step: metalevel programming

• automatize programmer’s operations on the code
• syntactic manipulation

From low to high level of language

Starting point: machine code

• repetitive code
• copy and paste

First step: metalevel programming

• automatize programmer’s operations on the code
• syntactic manipulation

Second step: internalize the metalevel

• lift high-level concepts to the language
• give them semantics

Some internalizations

From macros to functions

From file inclusions to a module system

From preprocessing to compilation

• from syntactic manipulation to semantic analysis
• errors are captured at the level of source code
• libraries can be precompiled (and delivered in binary...)

Where do parametrized modules arise?

A view on parametrized modules

They internalize the configurable inclusion of macro files

Example: language-neutral Latex

% file drink.tex
\include{english} %% \include{french}
\Qualify{\red}{\wine}

% file english.tex
\newcommand{\wine}{wine}
\newcommand{\red}{red}
\newcommand{\Qualify}[2]{#1 #2}

% file french.tex
\newcommand{\wine}{vin}
\newcommand{\red}{rouge}
\newcommand{\Qualify}[2]{#2 #1}

The ”interface” is the macro names with their arities.

This idea is used in Regulus (Rayner & al.) to write multilingual grammars.

Functional programming in linguistics: Zen

The Zen morphology toolkit (Huet)

• library in OCaml
• static type checking, module system
• generation of several formats
• efficient and reliable production of language resources (e.g. Sanskrit)

Functional programming in linguistics: GF

GF = Grammatical Framework

• a language of its own
• high-level source language + simple ”machine language” (Canonical GF)
• interpreters for Canonical GF: in Java, Haskell, C++, Prolog
• compilers from Canonical GF: to C, Javascript, GSL/Nuance, SRGS, HTK/ATK

(speech recognizer language models)

From Zen: datastructures and algorithms:

• tries
• zippers

II Overview of GF

Background

GF = Logical Framework + concrete syntax

Tradition:

• Curry’s tectogrammar + phenogrammar (1961)
• Montague grammar (1970)

The ”Curry architecture” has gained ground in the 2000’s

• ACG (de Groote)
• HOG (Pollard)
• Lambda grammars (Muskens)

A first example

Abstract syntax (category and function declarations)

cat Nat
cat Prop
fun Even : Nat -> Prop

Concrete syntaxes (linearization rules)

lin Even x = x ++ "is" ++ "even" -- English

lin Even x = x ++ "est" ++ "pair" -- French

lin Even x = x ++ "ist" ++ "gerade" -- German

Linguistic motivation

Translation must preserve meaning

Abstract syntax serves as an interlingua

• hub of translation
• semantic structure expressed in type theory
• limitation to specific domain

Thus we use LF as a framework for interlinguas

Strings are not enough

The French and German rules don’t scale up

*la somme de x et de y est pair

la somme de x et de y est paire

*wenn x ist gerade, x+2 ist gerade

wenn x gerade ist, ist x+2 gerade

Solution: parameters and linearization types

French:

param Gender = Masc | Fem ;

lincat Nat = {s : Str ; g : Gender} ;
lincat Prop = {s : Str} ;

lin Even x = {
s = x.s ++ "est" ++ case x.g of {
Masc => "pair" ;
Fem => "paire"
}

} ;

German: parametrized word order

param Order = Main | Inverse | Subordinate ;

lincat Nat = {s : Str} ;
lincat Prop = {s : Order => Str} ;

lin Even x = {
s = \\o => case o of {
Main => x.s ++ "ist" ++ "gerade" ;
Inverse => "ist" ++ x.s ++ "gerade" ;
Subordinate => x.s ++ "gerade" ++ "ist"
}

} ;

Too much code to write?

lin Even x = {
s = x.s ++ "est" ++ case x.g of {
Masc => "pair" ;
Fem => "paire"
}

} ;

lin Odd x = {
s = x.s ++ "est" ++ case x.g of {
Masc => "impair" ;
Fem => "impaire"
}

} ;

The functional programmer’s solution

Introduce auxiliary functions (operations)

oper regA : Str -> Gender -> Str = \noir,g ->
case g of {
Masc => noir ;
Fem => noir + "e"
} ;

lin Even x = {
s = x.s ++ "est" ++ regA "pair" x.g
} ;

lin Odd x = {
s = x.s ++ "est" ++ regA "impair" x.g
} ;

The advanced functional programmer’s solution

Introduce higher-order functions

oper
predA : (Gender -> Str) -> {s : Str ; g : Gender} -> {s : Str} = \bon,x -> {
s = x.s ++ "est" ++ bon x.g

} ;

lin Even = predA (regA "pair") ;
lin Odd = predA (regA "impair") ;

Resource grammar libraries

Operations can be stored in libraries, written by linguists.

Application programmers use linguistic structures in concrete syntax

lin Even = predA (regA "even")

rather than strings:

lin Even x = x.s ++ "is" ++ "even"

Application programmers need not know low-level linguistic details

• parameters
• inflection
• word order

The GF resource grammar library

Core syntax + complete inflectional morphology + small lexicon.

Size: 70 categories, 180 functions, 130 kLOC, 4 person years, 14 programmers.

Languages: 10 finished (Danish, English, Finnish, French, German, Italian, Norwe-
gian, Russian, Spanish, Swedish), 5 under construction (Arabic, Catalan, Swahili,
Thai, Urdu).

Applications:

• software specifications (KeY project)
• mathematical exercises (WebALT project)
• dialogue systems (TALK project)

Also: to show that GF scales up to large grammars.

The organization of the resource grammar library

Language-independent Syntax API

• all languages have S, NP, VP, etc, and same the rules for combining them

Language-dependent morphological Paradigms API’s

• languages differ in the complexity and variation of inflection

Common syntax interface

Starting point of GF: semantic structures are language-independent.

Later observation: also syntactic structures are largely the same.

Advantages:

• comparative linguistics (cf. LinGO Matrix in HPSG)
• common API for programmers
• the possibility of parametrized implementations

III The module system of GF

The computation model of GF

Abstract syntax: LF

• free algebra of trees
• dependently typed, second-order function types (for HOAS)
• syntax trees: eta-long well-typed lambda terms

Concrete syntax

• homomorphism from trees to concrete syntax objects
• concrete syntax objects: nested tuples of strings and integers

With some restrictions on abstract syntax, the formalism is mildly context-sensitive,
with polynomial parsing complexity (Ljunglöf 2004)

GF as a programming language

Dependently typed functional language with extra constructs

• finite functions (inflection tables)
• regular expression pattern matching

Module system inspired by Java, C++ and ML

• inheritance
• parametrized modules
• seven meanings of include

Overloading à la Ada, C++

The module system of GF

At run-time: one abstract + many concrete syntaxes

abstract A = {cat... fun...}

concrete C of A = {lin...}

In the source language, and at compile time: many modules, of different types

abstract A = {cat... fun...}

concrete C of A = open R in {lincat... lin...}

resource R = {param... oper...}

The resource modules are eliminated from run-time grammars, by inlining.

But they do have some separate compilation: type checking and partial evaluation.

Compilation example

param Gender = Masc | Fem ; -- type Gender = Ints 2

lincat Nat = {s : Str ; g : Gender} ; -- lincat Nat = [Ints 2, Str]
lincat Prop = {s : Str} ; -- lincat Prop = [Str]

lin Even x = { lin Even = [
s = x.s ++ "est" ++ case x.g of { $0.1 ++ "est" ++ [
Masc => "pair" ; "pair",
Fem => "paire" "paire"
}].($0.0)

} ;]

Extending a module

A module of any type module can extend modules of the same type

abstract Logic = ...

abstract Arithmetic = Logic ** ...
abstract Geometry = Logic ** ...

abstract Maths = Arithmetic, Geometry ** ...

Extending means inheritance of the contents of the module.

Changing an inherited module

The contents of an inherited module may not be changed.

But there is the possibility of restricted inheritance:

abstract IntLogic = Logic - [ExclMid, RAA] ** {
fun RAA : ...

}

Diamond property: a multiply inherited name must come from a common base
module.

Opening a module

A module of any type may open modules of any type

resource SyntaxEng = ...

concrete LogicEng of Logic = open SyntaxEng in { ... }

The contents of the opened module are usable, but they are not inherited.

Name clashes are avoided by explicit qualification: SyntaxEng.mkS

Splitting a resource into an interface and its instance

Example: fragment of GF resource grammar library

interface Syntax = { instance SyntaxEng of Syntax = {
oper oper
S : Type ; S = ...
NP : Type ; NP = ...
VP : Type ; VP = ...
A : Type ; A = ...
mkS : NP -> VP -> S ; mkS = ...
mkVP : A -> VP ; mkVP = ...
conjS : S -> S -> S ; conjS = ...

} }

Cf. signature and structure in ML.

Also: a genaralization of abstract vs. concrete.

Using the resource grammar library

Here is one way to use the resource library:

abstract Logic = {
cat Prop ;
fun And : Prop -> Prop ;

}
concrete LogicEng of Logic = open SyntaxEng in {
lincat Prop = S ;
lin And A B = conjS A B ;

}

What about French: do we have to write

concrete LogicFre of Logic = open SyntaxFre in {
lincat Prop = S ;
lin And A B = conjS A B ;

}

IV Parametrized modules

Incomplete=parametrized module = functor

Opening an interface is what makes a module parametrized:

incomplete concrete LogicI of Arithm = open Syntax in {
lincat Prop = S ;
lin And A B = conjS A B ;

}

The sense of this:

• logical structures are expressed with the same syntactic structures in different
languages...

• ...even though Syntax is implemented differently in different languages

Instantiating a functor

Provide instances to each opened interface: given

incomplete concrete LogicI of Logic = open Syntax in ...

we can write

concrete LogicEng of Logic = LogicI with (Syntax = SyntaxEng) ;

and then also

concrete LogicFre of Logic = LogicI with (Syntax = SyntaxFre) ;
concrete LogicGer of Logic = LogicI with (Syntax = SyntaxGer) ;
concrete LogicIta of Logic = LogicI with (Syntax = SyntaxIta) ;

The modules in a typical application

Abstract syntax, possibly extending some base modules

abstract Arithm = Logic ** {
cat Nat ;
fun Even, Prime : Nat -> Prop ;

}

Domain-dependent lexicon interface

interface ArithmLex = open Syntax in {
oper even_A, prime_A : A ;

}

Top-level functor parametrized on resource grammar Syntax and domain lexicon

incomplete concrete ArithmI of Arithm = LogicI ** open Syntax, ArithmLex in {
lincat Nat = NP ;
lin Even x = mkS x (mkVP even_A) ;
lin Prime x = mkS x (mkVP prime_A) ;

}

Porting the application to a new language

Write an instance of the lexicon interface

instance ArithmLexFin of ArithmLex = open SyntaxFin, ParadigmsFin in {
oper
even_A = mkA "parillinen" ;
prime_A = mkA "jaoton" ;

}

Mechanically provide an instantiation of the top-level functor

concrete ArithmFin of Arithm = LogicFin ** ArithmI with
(Syntax = SyntaxFin),
(ArithmLex = ArithmLexFin) ;

Discrepancies in the use of the functor

Sometimes the semantics is not expressed by the same syntactic structure.

English: x is prime (an adjective)

Swedish: x är ett primtal (a noun: ”x is a prime-number”)

Possible solution: make the functor and the lexicon interface more general

lin Even x = mkS x prime_VP ;

oper prime_VP : VP ;

But this is not stable when new languages are added.

Solving discrepancies by restricted inheritance

concrete ArithmSwe of Arithm = LogicSwe ** ArithmI - [Prime] with
(Syntax = SyntaxSwe),
(ArithmLex = ArithmLexSwe) ** open ParadigmsSwe in {

lin Prime x = mkS x (mkVP (indefNP (mkN "primtal" "primtal"))) ;
}

Module system summary: seven meanings of ”in-
clude”

B = A ** ... -- inheritance
C = open R in ... -- opening
concrete C of A = ... -- concrete of abstact
instance J of I = ... -- instance of interface
M = F with ... -- instantiation of functor
M = ... with (I = ...) -- interface in functor instantiation
M = ... with (... = J) -- instance of interface in functor instantiation

V Linguistic results: interlingua vs. transfer

Interlingua vs. transfer, 1

Two alternative models of machine translation.

The basic translation model in GF is interlingua:

två är ett primtal
| parsing

Prime two
| linearization

two is prime

Due to reversibility, a system with n languages needs n concrete syntax modules.

Interlingua vs. transfer, 2

**Transfer*: change the structure between source and target language

två är ett primtal
| parsing

mkS två_PN (mkVP (indefNP primtal_N))
| transfer

mkS two_PN (mkVP prime_A)
| linearization

two is prime

A system with n languages needs n(n-1) transfer functions.

There is, moreover, runtime overhead.

Compile-time transfer

Transfer is needed when languages use different structures for the same thing.

In GF, this means replacing a functor-based concrete syntax rule.

The transfer is eliminated when the grammar is compiled.

två är ett primtal två är ett primtal
| |

mkS två_PN (mkVP (indefNP primtal_N)) |
| |

Prime two Prime two
| |

mkS two_PN (mkVP prime_A) |
| |

two is prime two is prime

NB: some transfer cannot be eliminated at compile time.

VI Linguistic results: language families

Scandinavian and Romance

Parametrized modules are also used inside the resource grammar library

Shared functor code with language-specific instances for

• parameters and linearization types
• syntactic combination rules

(no effort to share morphology and lexicon code)

Two families are treated in this way:

• Scandinavian (Danish, Norwegian, Swedish), over 90% percent is shared
• Romance (French, Italian, Spanish), over 80% is shared.

Adding Catalan to the Romance family (Jordi Saludes, UPC) did not require changes
in the interfaces and the functor.

Example shared rule: adjectival modification

The adjective agrees to the noun in gender: nombre pair, somme paire.

Both receive their number from an outer determiner: chaque nombre pair, plusieurs
nombres pairs.

Their order depends on the adjective: bon livre, livre ennuyeux

lincat AP = {s : Gender => Number => Str ; isPre : Bool} ;

lincat CN = {s : Number => Str ; g : Gender} ;

lin AdjCN ap cn =
let
g = cn.g

in {
s = \\n => preOrPost ap.isPre (ap.s ! g ! n) (cn.s ! n) ;
g = g ;
} ;

The main differences

Which prepositions fuse with the definite article

• Fre and Spa à, de, Ita also da, in, con, su

Which auxiliary verbs are used in compound tenses

• Fre and Ita avere and essere, Spa only haber

Derivatively, if the participle can agree to the subject

• Fre elle est partie, Spa ella ha partido

If the participle agrees to the foregoing clitic

• Fre il les a vues, Spa el las ha visto

How infinitives and clitics are placed relative to each other

• Fre la voir, Ita vederla

How negative imperatives are formed

• Fre ne me quitte pas, Ita non lasciarmi

Whether a preposition is repeated in conjunction

• Fre la somme de 3 et de 4, Ita la somma di 3 e 4

The interface DiffRomance

Prepos : Type ;
VType : Type ;
partAgr : VType -> VPAgr ;
vpAgrClit : Agr -> VPAgr ;
clitInf : Str -> Str -> Str ;
mkImperative : VP -> {s : Polarity => AAgr => Str} ;
conjunctCase : NPForm -> NPForm ;

Results for language families

Gives an answer to ”how much of the grammar is really the same” in related
languages

Functors save time in creation and maintenance

• most differences were identified in the beginning
• thus most extensions of the grammar were shared

Sometimes the functor is more complicated than a non-functor would be

• need to think about many languages at the same time
• but the third language required only little changes, the fourth required none

Restricted inheritance was not available, but should be useful

• often just one language of the four is deviant

Conclusions on the module system

Large parts of languages can share abstract syntax.

This enables functor-based use of libraries.

Adding a new language to a system is often just a matter of writing a lexicon
instance.

Writing grammars only requires

• knowledge of domain vocabulary
• the applicational fragment of GF

