
Machine Translation, Type Theory, Dependent

Types

Aarne Ranta

TTR LOCI Workshop, London 16-17 June 2011 (Based on TYPES

2010, FreeRBMT 2011)

Plan

Machine Translation

Grammatical Framework

Dependent Types

Machine Translation

Important research problems

(From Hamming, ”You and your research”)

What are the important problems in your field?

Are you working on one of them?

If not, why?

http://www.paulgraham.com/hamming.html

The important problems in computational linguistics

type-theoretical semantics

The important problems in computational linguistics

type-theoretical semantics

anaphora resolution

The important problems in computational linguistics

type-theoretical semantics

anaphora resolution

multilingual syntax editing

The important problems in computational linguistics

type-theoretical semantics

anaphora resolution

multilingual syntax editing

machine translation

Beginnings of machine translation

Weaver 1947, encouraged by cryptography in WW II

Word lookup −→ n-gram models (Shannon’s ”noisy channel”)

ê = argmax P(f|e)P(e)

e

P(w1 ... wn) approximated by e.g. P(w1w2)P(w2w3)...P(w(n-1)wn)

(2-grams)

Modern version: Google translate translate.google.com

Word sense disambiguation

Eng. even −→ Fre égal, équitable, pair, plat ; même, ...

Eng. even number −→ Fre nombre pair

Eng. not even −→ Fre même pas

Eng. 7 is not even −→ Fre 7 n’est pas pair

Eng. 7 is not even even −→ Fre 7 n’est même pas pair

Long-distance dependencies

Ger. er bringt mich um −→ Eng. he kills me

Ger. er bringt seinen besten Freund um −→ Eng. he kills his best

friend

Type theory and machine translation

Bar-Hillel (1953): MT should aim at rendering meaning, not words.

Method: Ajdukiewicz syntactic calculus (1935) for syntax and seman-
tics.

Directional types (prefix and postfix functions)

loves : (n\s)n Mary : n

John : n loves Mary : n\s

John loves Mary : s

Categorial grammar, developed further by Lambek (1958), Curry (1961)

Bar-Hillel’s criticism

1963: FAHQT (Fully Automatic High-Quality Translation) is impossi-

ble - not only in foreseeable future but in principle.

Example: word sense disambiguation for pen:

the pen is in the box vs. the box is in the pen

Requires unlimited intelligence, universal encyclopedia.

1970’s and 1980’s

Trade-off: coverage vs. precision

Precision-oriented systems: Curry −→ Montague −→ Rosetta

Interactive systems (Kay 1979/1996)

• ask for disambiguation if necessary

• text editor + translation memory

Present day

IBM system (Brown, Jelinek, & al. 1990): back to Shannon’s model

Google translate 2007- (Och, Ney, Koehn, ...)

• 57 languages

• models built automatically from text data

Browsing quality rather than publication quality

Systran/Babelfish: rule-based, since 1960’s

Apertium (2005-): rule-based, closely related languages

FP7-ICT-247914, Strep, www.molto-project.eu

U Gothenburg, U Helsinki, UPC Barcelona, Ontotext (Sofia)

March 2010 - February 2013

What’s new?

Tool Google, Babelfish MOLTO
target consumers producers
input unpredictable predictable
coverage unlimited limited
quality browsing publishing

Producer’s quality

Cannot afford translating French

• prix 99 euros

to Swedish

• pris 99 kronor

Typical SMT error due to parallel corpus containing localized texts.

(N.B. 99 kronor = 11 euros)

Reliability

German to English

• er bringt mich um -> he is killing me

correct, but

• er bringt meinen besten Freund um -> he brings my best friend for

should be he kills my best friend. (Typical error due to long distance

dependencies, causes unpredictability)

Aspects of reliability

Separation of levels (syntax, semantics, pragmatics, localization)

Predictability (generalization for similar constructs, and over time)

Programmability / debugging and fixing bugs (vs. holism)

The translation directions

Statistical methods (e.g. Google translate) work decently to English

• rigid word order

• simple morphology

• originates in projects funded by U.S. defence

Grammar-based methods work equally well for different languages

• Finnish cases

• German word order

Main technologies

GF, grammaticalframework.org

• Domain-specific interlingua + concrete syntaxes

• GF Resource Grammar Library

• Incremental parsing

• Syntax editing

OWL Ontologies: resources for domain semantics

Statistical Machine Translation: robustness, grammar learning

http://grammaticalframework.org

MOLTO languages

Domain-specific interlinguas

The abstract syntax must be formally specified, well-understood

• semantic model for translation

• fixed word senses

• proper idioms

For instance: a mathematical theory, an ontology

Example: social network

Abstract syntax:

fun Like : Person -> Item -> Fact

Concrete syntax (first approximation):

lin Like x y = x ++ "likes" ++ y -- Eng

lin Like x y = x ++ "tycker om" ++ y -- Swe

lin Like x y = y ++ "piace a" ++ x -- Ita

Complexity of concrete syntax

Italian: agreement, rection, clitics (il vino piace a Maria vs. il vino mi

piace ; tu mi piaci)

lin Like x y = y.s ! nominative ++ case x.isPron of {

True => x.s ! dative ++ piacere_V ! y.agr ;

False => piacere_V ! y.agr ++ "a" ++ x.s ! accusative

}

oper piacere_V = verbForms "piaccio" "piaci" "piace" ...

Moreover: contractions (tu piaci ai bambini), tenses, mood, ...

Two things we do better than before

No universal interlingua:

• The Rosetta stone is not a monolith, but a boulder field.

Yes universal concrete syntax:

• no hand-crafted ad hoc grammars

• but a general-purpose Resource Grammar Library

The GF Resource Grammar Library

Currently for 16 languages; 3-6 months for a new language.

Complete morphology, comprehensive syntax, lexicon of irregular words.

Common syntax API:

lin Like x y = mkCl x (mkV2 (mkV "like")) y -- Eng

lin Like x y = mkCl x (mkV2 (mkV "tycker") "om") y -- Swe

lin Like x y = mkCl y (mkV2 piacere_V dative) x -- Ita

Word/phrase alignments via abstract syntax

Domains for case studies

Mathematical exercises (<- WebALT)

Patents in biomedical and pharmaceutical domain

Museum object descriptions

Demo: a tourist phrasebook (web and Android phones)

Other potential uses

Wikipedia articles

E-commerce sites

Medical treatment recommendations

Social media

SMS

Contracts

Challenge: grammar tools

Scale up production of domain interpreters

• from 100’s to 1000’s of words

• from GF experts to domain experts and translators

• from months to days

• writing a grammar ≈ translating a set of examples

Example-based grammar writing

Abstract syntax Like She He first grammarian
English example she likes him first grammarian
German translation er gefällt ihr human translator
resource tree mkCl he Pron gefallen V2 she Pron GF parser
concrete syntax rule Like x y = mkCl y gefallen V2 x variables renamed

Learning GF grammars by statistics

Abstract syntax Like She He first grammarian
English example she likes him first grammarian
German translation er gefällt ihr SMT system
resource tree mkCl he Pron gefallen V2 she Pron GF parser
concrete syntax rule Like x y = mkCl y gefallen V2 x variables renamed

Rationale: SMT is good for sentences that are short and frequent

Improving SMT by grammars

Rationale: SMT is bad for sentences that are long and involve word

order variations

if you like me, I like you

If (Like You I) (Like I You)

wenn ich dir gefalle, gefällst du mir

Grammatical Framework

History

Background: type theory, logical frameworks (LF), compilers

GF = LF + concrete syntax

Started at Xerox (XRCE Grenoble) in 1998 for multilingual document

authoring

Functional language with dependent types, parametrized modules, op-

timizing compiler

Run-time: Parallel Multiple Context-Free Grammar, polynomial

Factoring out functionalities

GF grammars are declarative programs that define

• parsing

• generation

• translation

• editing

Some of this can also be found in BNF/Yacc, HPSG/LKB, LFG/XLE

...

A model for reliable automatic translation: compilers

Translate source code to target code, preserving meaning

Method: parsing, semantic analysis, optimization, code generation

Multilingual grammars in compilers

Source and target language related by abstract syntax

iconst_2

iload_0

2 * x + 1 <-----> plus (times 2 x) 1 <------> imul

iconst_1

iadd

A GF grammar for arithmetic expressions

abstract Expr = {
cat Exp ;
fun plus : Exp -> Exp -> Exp ;
fun times : Exp -> Exp -> Exp ;
fun one, two : Exp ;
}

concrete ExprJava of Expr = { concrete ExprJVM of Expr= {
lincat Exp = Str ; lincat Expr = Str ;
lin plus x y = x ++ "+" ++ y ; lin plus x y = x ++ y ++ "iadd" ;
lin times x y = x ++ "*" ++ y ; lin times x y = x ++ y ++ "imul" ;
lin one = "1" ; lin one = "iconst_1" ;
lin two = "2" ; lin two = "iconst_2" ;
} }

Multi-source multi-target compilers

Multilingual grammars in natural language

Natural language structures

Predication: John + loves Mary

Complementation: love + Mary

Noun phrases: John

Verb phrases: love Mary

2-place verbs: love

Abstract syntax of sentence formation

abstract Zero = {

cat

S ; NP ; VP ; V2 ;

fun

Pred : NP -> VP -> S ;

Compl : V2 -> NP -> VP ;

John, Mary : NP ;

Love : V2 ;

}

Concrete syntax, English

concrete ZeroEng of Zero = {

lincat

S, NP, VP, V2 = Str ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2 ++ np ;

John = "John" ;

Mary = "Mary" ;

Love = "loves" ;

}

Multilingual grammar

The same system of trees can be given

• different words

• different word orders

• different linearization types

Concrete syntax, French

concrete ZeroFre of Zero = {

lincat

S, NP, VP, V2 = Str ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2 ++ np ;

John = "Jean" ;

Mary = "Marie" ;

Love = "aime" ;

}

Just use different words

Translation and multilingual generation in GF

Import many grammars with the same abstract syntax

> i ZeroEng.gf ZeroFre.gf

Languages: ZeroEng ZeroFre

Translation: pipe parsing to linearization

> p -lang=ZeroEng "John loves Mary" | l -lang=ZeroFre

Jean aime Marie

Multilingual random generation: linearize into all languages

> gr | l

Pred Mary (Compl Love Mary)

Mary loves Mary

Marie aime Marie

Parameters in linearization

Latin has cases: nominative for subject, accusative for object.

• Ioannes Mariam amat ”John-Nom loves Mary-Acc”

• Maria Ioannem amat ”Mary-Nom loves John-Acc”

Parameter type for case (just 2 of Latin’s 6 cases):

param Case = Nom | Acc

Concrete syntax, Latin

concrete ZeroLat of Zero = {

lincat

S, VP, V2 = Str ;

NP = Case => Str ;

lin

Pred np vp = np ! Nom ++ vp ;

Compl v2 np = np ! Acc ++ v2 ;

John = table {Nom => "Ioannes" ; Acc => "Ioannem"} ;

Mary = table {Nom => "Maria" ; Acc => "Mariam"} ;

Love = "amat" ;

param

Case = Nom | Acc ;

}

Different word order (SOV), different linearization type, parameters.

Table types and tables

The linearization type of NP is a table type: from Case to Str,

lincat NP = Case => Str

The linearization of John is an inflection table,

lin John = table {Nom => "Ioannes" ; Acc => "Ioannem"}

When using an NP, select (!) the appropriate case from the table,

Pred np vp = np ! Nom ++ vp

Compl v2 np = np ! Acc ++ v2

Love in Dutch

Concrete syntax, Dutch

concrete ZeroDut of Zero = {

lincat

S, NP, VP = Str ;

V2 = {v : Str ; p : Str} ;

lin

Pred np vp = np ++ vp ;

Compl v2 np = v2.v ++ np ++ v2.p ;

John = "Jan" ;

Mary = "Marie" ;

Love = {v = "heeft" ; p = "lief"} ;

}

The verb heeft lief is a discontinuous constituent.

Record types and records

The linearization type of V2 is a record type

lincat V2 = {v : Str ; p : Str}

The linearization of Love is a record

lin Love = {v = "heeft" ; p = "lief"}

The values of fields are picked by projection (.)

lin Compl v2 np = v2.v ++ np ++ v2.p

Concrete syntax, Hebrew

The verb agrees to the gender of the subject.

Abstract trees vs. parse trees

Abstract trees

• nodes: constructor functions

• leaves: constructor functions

Parse trees

• nodes: categories

• leaves: words

Abstract is more abstract

Abstract is more abstract

Abstract is more abstract

From trees to words

From words to trees to words

From words to words

Generating word alignment: summary

In L1 and L2: link every word with its smallest spanning subtree

Delete the intervening tree, combining links directly from L1 to L2

Notice: in general, this gives phrase alignment

Notice: links can be crossing, phrases can be discontinuous

Complexity of grammar writing

To implement a translation system, we need

• domain expertise: technical and idiomatic expression

• linguistic expertise: how to inflect words and build phrases

The GF Resource Grammar Library

Morphology and basic syntax

Common API for different languages

Currently (June 2011) 19 languages: Afrikaans, Bulgarian, Catalan,

Danish, Dutch, English, Finnish, French, German, Italian, Norwegian,

Persian, Polish, Punjabi, Romanian, Russian, Spanish, Swedish, Urdu.

Under construction for more languages: Amharic, Arabic, Hindi, Irish,

Latin, Latvian, Nepali, Swahili, Thai, Turkish.

Contributions welcome!

The scope of resource grammars

Morphology: all inflectional forms and paradigms

Syntax: basic syntax, ”complete in expressive power” (cf. CLE)

Lexicon:

• multilingual test lexicon of 500 words (structural and irregular;

Swadesh)

• comprehensive monolingual for Bulgarian, English, Finnish, Swedish,

Turkish

Inflectional morphology

Goal: a complete system of inflection paradigms

Paradigm: a function from ”basic form” to full inflection table

GF morphology is inspired by

• Zen (Huet 2005): typeful functional programming

• XFST (Beesley and Karttunen 2003): regular expressions

Smart paradigm, implementor’s view

Help the lexicographers work by pattern matching on strings

regV : Str -> V = \v -> case v of {
fi + ("s"|"z"|"x"|"ch"|"sh") => mkV v (v + "es") (v + "ed") (v + "ing") ;
d + "ie" => mkV v (v + "s") (v + "d") (d + "ying") ;
fr + "ee" => mkV v (v + "s") (v + "d") (v + "ing") ;
us + "e" => mkV v (v + "s") (v + "d") (us + "ing") ;
pl + ("a"|"e"|"o"|"u") + "y" => mkV v (v + "s") (v + "ed") (v + "ing") ;
cr + "y" => mkV v (cr + "ies") (cr + "ied") (v + "ing") ;
dr + o@(#vowel) + p@(#cons) => mkV v (v + "s") (v + p + "ed") (v + p + "ing") ;
_ => mkV v (v + "s") (v + "ed") (v + "ing") ;

} ;

Morphology API

Overloaded function, heuristic variables for arguments

mkV : (fix : Str) -> V

mkV : (sing, sang, sung : Str) -> V

mkN : (bunch : Str) -> N

mkN : (man, men : Str) -> N

This is how the lexicon looks

Principle: just the minimum of information given (POS, characteristic

forms)

mkN "boy"

mkV "cut" "cut" "cut"

mkV "drop"

mkA "happy"

mkN "mouse" "mice"

mkV "munch"

mkV "sing" "sang" "sung"

mkV "try"

This scales up

In Finnish, nouns have 30 forms.

• 85% need only one form

• 1.42 is the average

Finnish verbs with hundreds of forms need an average of 1.2 forms.

Syntax API

Combination rules

mkCl : NP -> V2 -> NP -> Cl -- John loves Mary

mkNP : Numeral -> CN -> NP -- five houses

Structural words

the_Det : Det

youSg_NP : NP

Meaning-preserving translation

Translation must preserve meaning.

It need not preserve syntactic structure.

Sometimes this is even impossible:

• John likes Mary in Italian is Maria piace a Giovanni

The abstract syntax in the semantic grammar is a logical predicate:

fun Like : Person -> Item -> Fact

lin Like x y = x ++ "likes" ++ y -- English

lin Like x y = y ++ "piace" ++ "a" ++ x -- Italian

Translation and resource grammar

To get all grammatical details right, we use resource grammar and not

strings

lincat Person, Item = NP ; Fact = Cl ;

lin Like x y = mkCl x like_V2 y -- English

lin Like x y = mkCl y piacere_V2 x -- Italian

From syntactic point of view, we perform transfer, i.e. structure

change.

GF has compile-time transfer, and uses interlingua (semantic abstrac

syntax) at run time.

More on GF

GF homepage, http://grammaticalframework.org

http://grammaticalframework.org

A. Ranta, Grammatical Framework: Pro-

gramming with Multilingual Grammars, CSLI Publications, Stanford,

2011, ISBN 1-57586-626-9.

Registration open till 30 June: http://school.grammaticalframework.org

http://school.grammaticalframework.org

Dependent Types

Semantics: well-typedness

Domain-dependent categories

cat Dom ; NP Dom ; VP Dom ; S

fun Pred : (d : Dom) -> NP d -> VP d -> S

Uses

• word sense disambiguation

• better generation of synthetic corpora

Generalization of well-typedness: type classes

Proof objects establish class membership

cat Dom ; Animate Dom

fun

Sleep : (d : Dom) -> Animate d -> VP d

Man, Donkey : Dom

ManIsAnimate : Animate Man

DonkeyIsAnimate : Animate Donkey

Notice: this may well be language dependent, e.g. German essen -

fressen ”eat”

Another generalization of well-typedness: coercive sub-
typing

Proof objects establish subtype relation

cat Dom ; Subtype Dom Dom

fun

Pred : (d,e : Dom) -> Subtype d e -> NP d -> VP e -> S

Human, Teacher : Dom

TeacherIsHuman : Subtype Teacher Human

Semantics: anaphora

the monkey ate the banana because it was hungry - er war hungrig

the monkey ate the banana because it was ripe - sie war reif

the monkey ate the banana because it was tea-time - es war Teezeit

The grammar of pronouns

Simplified German:

fun Pron : (t : Typ) -> Ref t -> Exp t

lin Pron t _ = case (gender t) of {

Masc => "er" ;

Fem => "sie" ;

Neutr => "es"

}

Parsing English it creates the tree Pron ?1 ?2.

Algorithm

1. Analyse the context to form the referent space {r1 : R1,...,rn :

Rn}.

2. Collect all types {T1,...,Tm} that an object may have in the posi-

tion of the pronoun.

3. Consider the set of those elements ri : Ri whose type Ri matches

some of the types Tj.

(a) If the set is singleton {ri : Ri}, then ri is the referent and its

type is Ri.

(b) If the set is empty, then report an anaphora resolution error

(or widen the referent space).

(c) If the set has many elements, then ask the user to disambiguate

(or look for more constraints).

Syntax: agreement

Agreement could be modelled by

fun Pred : (a : Agr) -> NP a -> VP a -> S

However, we find it better to model agreement in concrete syntax

Syntax: subcategorization

Instead of

ComplV1 : V1 -> VP -- sleep

ComplV2 : V2 -> NP -> VP -- love

ComplVS : VS -> S -> VP -- believe

one could have

Compl : (s : Subcat) -> V s -> Comps s -> VP

However, the saving is marginal, since one has to define Subcat and

Comps with as many rules.

Syntax: coordination

Rule: V2 coordination requires common complement case/preposition

ConjV2 : Conj -> (c : Case) -> V2 c -> V2 c -> V2 c

This is the only rule known to us that requires the use of language-

specific features in concrete syntax.

Conclusion

You shouldn’t expect

• general-purpose translation (”Google competitor”)

You can expect

• high quality multilingual translation

• portability to limited domains (up to 1000’s of words)

• productivity (days, weeks, months)

• ease of use (no training for authoring, a few days for grammarians)

Dependent types: used minimally so far, mostly for disambiguation.

