Levels of Abstraction in

Language and Logic

Aarne Ranta aarne@chalmers.se

Philosophy and Foundations of Mathematics: Epistemological and Ontological Aspects

Uppsala, May 5-8, 2009

To Per Martin-Löf

Background

Type theory and linguistics

Sundholm 1986; AR 1990, 1994,...

Type theory as model for language

- formal and informal language
- conceptual, mathematical, and computational model

How has this improved our understanding? our processing capability?

Abstraction

In psychology: formation of general concepts, suppression of details

In mathematics: more and more general definitions and theorems (calculus to topology to category theory)

In linguistics: levels of phonetics, phonology, morphology, syntax, semantics, pragmatics

Prototypical case: phonetics vs. phonology

Invented by Jan Baudouin de Courtenay (1879)

Cornerstone of structuralistic linguistics of the Prague school (Jakobson, Trubetzkoy, 1930's)

Concrete elements: **phones** (sounds); [p], [p'], [b]

Abstract elements: **phonemes** (elements of distinctive sound system of a language): /p/, /b/

Opposition, complementary distribution, free variation

Opposition: [p], [b] represent different phonemes /p/, /b/

• /pin/ [pin] vs. /bin/ [bin]

Complementary distribution: [p], [p'] represent the same phoneme /p/ in in the beginning of a syllable

• /pin/ [p'in] vs. /spin/ [spin]

Free variation: [p], [p'] represent the same phoneme /p/ in the end of a syllable

• *sip* can be pronounced [sip] or [sip']

Morphs and morphemes

Morphs (words, suffixes,...) represent morphemes.

The plural *s* and *es* in English are in complementary distribution:

• tree-trees vs. bush-bushes

The passive *s* and *es* in Swedish are in free variation:

• *skriva* - *skrivs*|*skrives*

Note: "free variation" abstracts away from style, dialects, etc

Mathematical models of abstraction

Lambda abstraction: constant to variable, expression to function

Equivalence relations: identify objects that are equal w.r.t. a relevant property

The latter can model levels of abstraction

Levels of abstraction in type theory

Syntactic equality

4*x + 5 = 4*x + 5

Definitional equality

4 * x + 5 = x + x + x + x + 5

Propositional equality

I(N, x + y, y + x)

Equivalence relation

I(A, p(x), p(y))

Questions of syntactic equality

Do the following syntactic equalities hold?

A & B = A / B 4*x + 5 = (4*x) + 5 plus(x,y) = x + y N 2 = N -> 2(All x : N)P(x) = (All y : N)P(y)

Levels of abstraction in syntax

Concrete syntax: string equality

Abstract syntax: tree equality, structural equality (Carnap, Curry, McCarty, Landin)

In abstact syntax, all that matters is

- what parts does the expression have?
- in which way are the parts put together?

Irrelevant in abstract syntax

- How do the parts look like?
- In what order do the parts appear?

Let's try to make this precise!

From logical to grammatical framework

LF, Logical Lramework (Martin-Löf; Harper, Honsell, and Plotkin): abstract syntax rules as **function declarations**,

fun plus : $N \rightarrow N \rightarrow N$

GF, Grammatical Framework (AR): concrete syntax as **linearization rules**,

lin plus x y = x "+" y

GF = LF + concrete syntax

Context-free grammar

Fuses together abstract and concrete syntax

plus. N ::= N "+" N

Every rule can be translated to a GF rule pair, abstract + concrete

But GF is more expressive:

- permutation: F x y = y x
- suppression: F x y = y
- reduplication: F = x = x = x

Parsing and linearization

Linearization: from abstract syntax tree to string:

plus (plus x y) z ==> "x + y + z"

Parsing: from string to abstract syntax trees:

"x + y + z" ===> plus (plus x y) z ; plus x (plus y z)

Thus a string can be **ambiguous** between many trees.

Avoiding ambiguity

We could change the linearization rule to

lin plus x y = "(" x "+" y ")"

But we don't want this: we use parentheses only when necessary:

• left associativity: (x + y) + z can be written x + y + z

Precedence as parameter

Linearization of a number expression: a **record** with a string and a precedence number

```
lin plus = infixl 2 "+"
where
infixl i f x y = {
    s = parenth i x ++ f ++ parenth (i+1) y ;
    p = i
    };
parenth i x = if (x.p < i) then "(" ++ x.s ++ ")" else x.s</pre>
```

We start to use explicit concatenation operator ++

Syntactic equality

Does the following syntactic equality hold?

$$(x + y) = x + y$$

Answer:

- in concrete syntax (strings): no
- in abstract syntax (trees): yes, in the sense "strings resulting via linearization from the same tree"

Linearization types

Logical Framework declares new types (categories)

cat N

Grammatical Framework defines their linearization types

lincat $N = \{s : Str ; p : Ints 6\}$

Thus: not only linearizations, but also their types can be varied.

Multilingual grammar

One abstract syntax

cat N ;
fun plus : N -> N -> N ;

Many concrete syntaxes

```
lincat N = {s : Str ; p : Ints 6} ;
lin plus = infixl 2 "+" ;
lin N = Str ;
lin plus x y = x ++ y ++ "iadd" ;
```

Translation in multilingual grammar

Parse in one concrete syntax, linearize in another:

Thus a multilingual grammar can also define a **compiler**.

Multilingual syntactic equality

Does the following syntactic equality hold?

1 + 2 = iconst_1 iconst_2 iadd

Answer:

- in concrete syntax (strings): no
- in abstract syntax (trees)
 - no, not in any single language
 - yes, in a multilingual grammar where they are strings resulting via linearization from the same tree

Extending to natural language

English

lincat N = Str ;
lin plus x y = "the sum of" ++ x ++ "and"" ++ y

Finnish: inflection table depending on case

```
lincat N = Case => Str ;
lin plus x y = table {
   c => x ! Gen ++ "ja" ++ y ! Gen ++ summa ! c
   }
where
   summa = table {Nom => "summa" ; Gen => "summan"}
```

Examples

2

two kaksi

1 + 2

the sum of one and two yhden ja kahden summa

1 + 2 + 3

the sum of the sum of one and two and three yhden ja kahden summan ja kolmen summa

Abstract syntax in natural language

What is the abstract syntax of the sum of one and two ?

In type theory:

plus 1 2

In "standard linguistic syntax":

DetCN the_Det (PrepCN sum_CN of_Prep (ConjNP and_Conj one_NP two_NP))

Proper question: what is the abstract syntax of string s in grammar G?

Linguistic syntax

Categories: noun phrase, common noun, determiner, preposition, conjunction

```
cat NP ; CN ; Det ; Prep ; Conj
```

Rules: determination, prepositional modification, coordination

fun
 DetCN : Det -> CN -> NP ;
 PrepCN : CN -> Prep -> NP -> CN ;
 ConjNP : Conj -> NP -> NP -> NP ;

the sum of one and two

DetCN the_Det (PrepCN sum_CN of_Prep (ConjNP and_Conj one_NP two_NP))

Grammar composition

Abstract syntax: "semantic structures"

Concrete syntax: use the "syntactic structures" of linguistic grammar to define linearization

```
lincat N = NP ;
lin plus x y =
   DetCN the_Det (PrepCN sum_CN of_Prep (ConjNP and_Conj x y) ;
```

The chain of lin rules can be composed at compile time, to produce strings directly from semantic structures.

The GF resource grammar library

Linguistic grammar of 12 languages (20 more forthcoming)

Common syntax: 50 categories, 200 functions

Language-specific morphologies and lexica

Hypothesis: the same abstract structure can be found in different languages. Confirmed for the 12 languages, refuted for none so far.

A substantial task for the 6,000 languages of the world...

Compositionality and reversibility

The hypothesis would be empty, if lin could be arbitrary functions.

However, they are constrained by two principles:

1. **Compositionality**: linearization is a homomorphism.

(F a1 ... an) * = F * a1 * ... an *

2. **Reversibility**: linearization rules are usable for parsing (in practice: they are finite datastructures - nested tuples like in PMCFG, cf. Seki 1990, Ljunglöf 2004).

Utility of common syntax

Linearization can be made to a **functor**, a **parametrized module**

```
lincat N = NP ;
lin plus x y =
   DetCN the_Det (PrepCN sum_CN of_Prep (ConjNP and_Conj x y) ;
```

with the interface declaring the syntactic structures and the constant

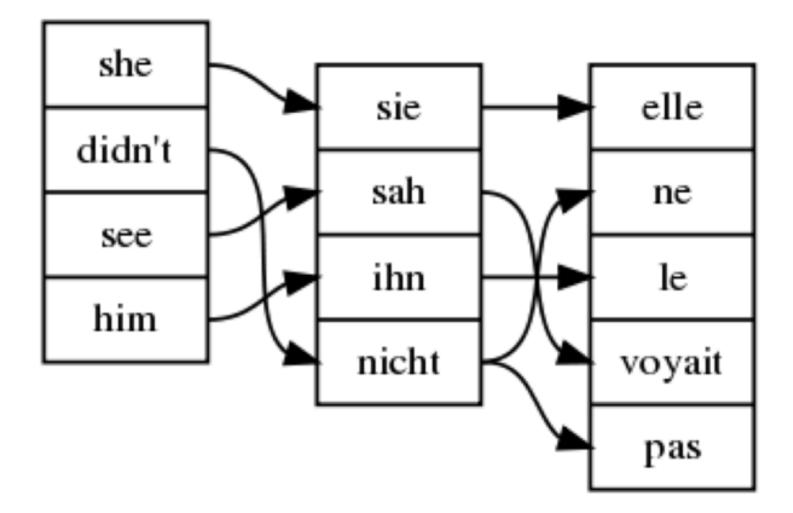
sum_CN : CN

instantiated in different ways in different languages

<pre>sum_CN = regCN</pre>	"sum"	 English
<pre>sum_CN = regCN</pre>	"summa"	 Finnish
<pre>sum_CN = regCN</pre>	"somme"	 French

Word alignment

Link words with common smallest spanning abstract syntax subtree.



Literal translation

Literal translation: use the same syntactic structures in source and target.

Functors are the closest we can get to literate translation:

- words are of course different
- also inflection, agreement, and word order differ
- but the parts and their combinations are the same

Literal = syntactic-structure-preserving

Non-literal translation

Use the linguistic resource in different ways in different languages

```
fun Like : Person -> Person -> Prop
```

```
lin Like x y = PredVP x (ComplV2 like_V2 y) -- English
lin Like x y = PredVP y (ComplV2 piacere_V2 x) -- Italian
```

John likes Mary ===> Like John Mary ===> Maria piace a Giovanni

This translation is still *compositional*.

Compositional = semantic-structure-preserving

Easy to construct from non-literal translation via subsentential coordination:

John likes and admires Mary ===>

ConjRel Like Admire John Mary ===>

```
ConjProp (Like John Mary) (Admire John Mary) ===>
```

Maria piace a Giovanni e Giovanni ammira Maria

We need to **paraphrase** the sentence.

What is presented is a **denotation** (e.g. truth value).

Levels of translation

translation	preserves sameness of		
identical	string		
literal	linguistic structure		
compositional	semantic structure		
paraphrasing	denotation		

Free variation

In what sense is

A & B = A / B

Obviously: linearization to different notations:

lin Conj A B = A ++ "&" ++ B lin Conj A B = A ++ "/\" ++ B

But GF also has operator | for free variation

lin Conj A B = A ++ ("/" | "&") ++ B

Does this example show a sensible language?

Input vs. output grammars

Free variation is up to a *level of abstraction*.

For instance: abstraction from style

- \bullet one author wouldn't use & and /\ in free variation
- it is rarely adequate for **generating output**

But free variation can be useful for **recognizing input**, for instance, in information retrieval.

Input grammars for dialogue systems

Abstract syntax: requests such as

```
fun BuyTicket : City -> City -> Request
```

```
lin BuyTicket x y =
  (("I want" ++ ((("to buy" | []) ++ ("a ticket")) | "to go"))
  |
  (("can you" | [] ) ++ "give me" ++ "a ticket")
  |
  []) ++
  "from" ++ x ++ "to" ++ y ++
  ("please" | [])
```

In free variation as requests

I want to buy a ticket from Gothenburg to Uppsala

I want to go from Gothenburg to Uppsala

can you give me a ticket from Gothenburg to Uppsala

a ticket from Gothenburg to Uppsala

from Gothenburg to Uppsala

Complementary distribution

Typical case: inflection tables

```
lin Even = table {
  AF Masc Sg => "pair";
  AF Masc Pl => "pairs";
  AF Fem Sg => "paire";
  AF Fem Pl => "paires"
  }
```

The French words *pair, pairs, paire, paires* are in complementary distribution.

They express the same abstract syntax in the same concrete syntax, but in different contexts.

Questions of syntactic equality revisited

Do the following syntactic equalities hold?

A & B = A / B 4*x + 5 = (4*x) + 5 plus(x,y) = x + y N 2 = N -> 2 (All x : N)P(x) = (All y : N)P(y)

Questions of syntactic equality revisited

Do the following syntactic equalities hold?

A & B	=	A /∖ B	YES
4*x + 5	=	(4*x) + 5	NO
plus(x,y)	=	x + y	YES
N 2	=	N -> 2	YES
(All x : N)P(x)	=	(All y : N)P(y)	NO

Free parentheses?

```
Both (x + y) + z and x + y + z should be OK, and can be obtained,
```

```
parenth i x = if (x.p < i)
then "(" ++ x.s ++ ")"
else x.s | "(" ++ x.s ++ ")"</pre>
```

But current GF can't permit *arbitrarily many* parentheses.

Neither can we permit alpha conversion as syntactic equality.

Finite automata

To express the variations in the abstract syntax

MkNP : Prep -> Num -> CN -> NP
for, with, Nom : Prep
one, five : Num
man, woman : CN

picture

Two dimensions of syntactic equality

Equality in given abstract syntax

- as strings
- in complementary distribution
- in free variation

Level of granularity in abstract syntax

- syntactic
- propositional-semantic
- pragmatic