
A cloud-based editor for multilingual grammars

Anonymous

Abstract

GF (Grammatical Framework) is a gram-
mar formalism particularly suited for mul-
tilingual applications of natural language.
The current work aims at simplifying the
task for writing such applications for both
beginner and experienced users of GF. The
main contribution is a multilingual gram-
mar editor in the cloud that provides syn-
tax and type checking in real time, facil-
ities for adding a new language to an ex-
isting grammar and all the advantages of
cloud-based development. In addition to
this, we mention the emerging feature of
example-based grammar writing meant at
automating a large part of the grammar de-
velopment effort by inferring pieces of GF
code from examples in natural language
provided by the user.

1 Introduction

GF, the Grammatical Framework (Ranta, 2011a;
Ranta, 2011b), is a grammar formalism with ac-
companying tools that is particularly suited for
high-quality translation of restricted languages. A
multilingual grammar in GF consists of (1) an ab-
stract syntax that captures the meanings of interest
and (2) a number of concrete syntaxes that map the
meanings of the abstract syntax to concrete repre-
sentations in the natural (or formal) languages rel-
evant to the application.

GF grammars can be compiled to Portable
Grammar Format files (Angelov et al., 2010) that
can be used with the GF run-time library to in-
clude natural language processing in applications.
The key operations provided by the run-time li-
brary are parsing, generation, and (by combining
the former two) translation. The GF run-time li-
brary is also available as a web service, which can
be used to create interactive natural language web

applications (Bringert et al., 2009; Ranta et al.,
2010). An example can be seen in Figure 4.

While applications based on GF grammars can
be made available online, the grammars them-
selves have to be created with offline tools that
the grammar developer has to download and in-
stall on his/her own computer. As a remedy to this,
we present the GF online editor for simple multi-
lingual grammars, which allows grammars to be
created online. Not only does this provide a de-
velopment environment that is more accessible to
novice grammar developers, but it also opens up
possibilities for new applications, such as a tourist
phrasebook that can be extended by the user with
a new topic of interest, or a language training tool
(like the one in Figure 5) that instructors or stu-
dents can customize for training or testing a partic-
ular vocabulary or particular grammatical forms.

We also demonstrate a new technique for
example-based grammar writing that we are
adding support for in the online editor. This makes
it possible for a user with minimal knowledge of
GF grammar construction to add new languages
to a multilingual grammar by translating automat-
ically generated examples in one of the existing
languages to the new language.

2 The GF online grammar editor

As the name suggests, the GF online editor for
simple multilingual grammars is available online1,
so all that is needed to use the editor is a device
with a reasonably modern web browser. Even An-
droid and iOS devices can be used. To help novice
grammar authors, the editor provides some guid-
ance, e.g. by showing a skeleton grammar file and
hinting how the parts should be filled in. When a
new part is added to the grammar, it is immedi-
ately checked for errors.

Figure 1 illustrates what the editor looks like.

1We omit the link, to preserve the illusion of anonymity.



Figure 1: GF online editor for simple multilingual grammars

Editing operations are accessed by clicking on
editing symbols embedded in the grammar dis-
play: +, x and % to add, delete and edit items.
These are revealed when hovering over items. On
touch devices, hovering is in some cases simulated
by tapping, but there is also a button to ”Enable
editing on touch devices” that reveals all editing
symbols.

The current version of the editor supports a
small but useful subset of the GF grammar nota-
tion. Proper error checking is done on the fly for
abstract syntax, but not (yet) for concrete syntax.

Grammars created with this editor consist of
one module for the abstract syntax, and one mod-
ule for each concrete syntax. Grammars can im-
port modules from the Resource Grammar Library
(Ranta, 2009b), freeing the grammar author from
dealing directly with the linguistic complexity of
natural languages, such as inflection and agree-
ment.

2.1 Abstract syntax

The supported abstract syntax corresponds to
context-free grammars. The definition of an ab-
stract syntax consists of

• a list of category names, C1 ; ... ; Cn,
• a list of functions, Funi : Ci1 → ...→ Cin

• and the designation of a start category.

Available editing operations:

• Categories can be added, removed and re-
named. When renaming a category, occur-

rences of it in function types will be updated
accordingly.
• Functions can be added, removed and edited.

Concrete syntaxes are updated to reflect
changes.
• Functions can be reordered using drag-and-

drop.

The editor checks the abstract syntax for correct-
ness as it is entered. Syntactically incorrect func-
tion definitions are rejected. Semantic errors such
as duplicated definitions or references to unde-
fined categories, are highlighted. This is enough
to ensure that a grammar that is accepted by the
editor will also be accepted by the GF grammar
compiler.

2.2 Concrete syntax

When adding a new concrete syntax to a gram-
mar, the editor shows a list of supported natural
languages and the user just picks one. See Fig-
ure 2. The name of the new module is filled in
automatically based on naming conventions, e.g.
FoodsEng if abstract syntax is called Foods and
we are adding a translation to English. The body
of the new concrete syntax can be created by copy-
ing and modifying an existing concrete syntax, or
by starting with a skeleton based on the abstract
syntax.

The key components of a concrete syntax are
linearization types for the categories and lin-
earizations for the functions in the abstract syntax.
The editor automatically provides correct LHSs



Figure 2: Adding a new concrete syntax

Figure 3: Opening modules from the Resource
Grammar Library

for these, since they are determined by the abstract
syntax, while the RHSs can be edited freely.

The editor allows a concrete syntax to open
some of the relevant Resource Grammar Library
modules. A list of suitable library modules is
shown, e.g., SyntaxEng and LexiconEng in
a concrete syntax for English, so the user does not
need to know their names by heart. See Figure 3.

The editor also supports definitions of param-
eter types and auxiliary operations, but usually it
is enough to rely on the types and operations pro-
vided by the Resource Grammar Library.

The editor checks all user editable parts of the
concrete syntax for syntactic correctness as they
are entered. Duplicated definitions of parameter
types or operations are highlighted. Checks for
other semantic errors are delayed until the gram-
mar is compiled.

Figure 4: Testing grammars in the Minibar

Figure 5: Testing grammars in the Translation
Quiz

2.3 Compiling and testing grammars
When pressing the Compile button, the grammar
will be uploaded to the server and compiled with
GF, and any errors not detected by the editor will
be reported. Error-free grammars can be tested
by clicking on the the Minibar button, which is
a web-based translation tool, and the Quiz button,
which is a web-based language training tool (Abo-
lahrar, 2011). See Figures 4 and 5.

2.4 Grammars in the cloud
While grammars created in the editor are stored
locally in the device by the browser, it is also pos-
sible to store grammars in the cloud. Each device
is initially assigned to its own unique cloud and
has its own set of grammars, but it is also possible
to merge clouds and share a common set of gram-
mars between multiple devices.



3 Example-based grammar writing

The example-based grammar writing mechanism
is aimed at helping users who build concrete gram-
mars using the resource grammar for the given
language. The resource library provides over
300 functions for building grammatical constructs
such as predication, complementation, etc (Ranta,
2009a). Using the resource library is advanta-
geous on one hand, because it alleviates the dif-
ficulty of reimplementing language-specific fea-
tures every time when writing a grammar for the
language, but on the other hand it assumes a work-
ing knowledge of the resource library, which could
lead to a larger overall effort. We aim at freeing
users from this burden by making it possible for
them to write function linearizations by giving ex-
ample of their usage. In the current scenario, we
assume that a large lexicon covering the words that
could be used in the grammar is available already.
We will use the resource grammar enhanced with
the larger dictionary for parsing the examples from
the user in order to infer the right linearization
form.

Since the functions from the grammar could
take arguments, in order to give an example for
the usage of a certain function, we need to have
one example for each of its arguments in order to
get more precise information about the behavior
of the function. For this reason, only the function
for which all arguments can be found among the
already implemented functions, are highlighted as
available for the example-based method.

In order to clarify the usage of a certain func-
tion, its context is made explicit by embedding
the function into a tree returning the start category,
like in Figure 6 where ”this fish” is used to make
phrases like ”this fish is delicious”. Since certain
parts of the phrase are not relevant for the task,
they are underspecified by using ”?” instead. In
case that the grammar returns more than one parse
tree, the results are ranked in the descending or-
der of their probability (defined in the correspond-
ing resource grammar or defined by the user), and
the first tree from which the arguments can be ab-
stracted is chosen as the linearization tree.

The technique has been used as an experimental
way for developing a tourist phrasebook grammar
in GF for 4 languages (Ranta et al., 2011), but no
tool support was available at that time. The pos-
itive results obtained were a strong motivation to
make the method available to end users as part of

Figure 6: Example-based grammar construction

a GF grammar writing system.
The example-based grammar writing system is

still work in progress and the basic prototype cur-
rently available will be further developed and im-
proved. It is possible to use it already for 5 lan-
guages where a large dictionary is available in GF
(English, Swedish, Finnish, Bulgarian, French).

4 Related work

GF is a grammar formalism comparable in expres-
sive power to HPSG (Pollard and Sag, 1994) and
LFG (Bresnan, 1982), but different due to the dis-
tinction between the abstract and concrete dimen-
sion of a grammar, along with the possibility to
share the abstract syntax which makes translation
between any pair of languages possible. In the
same way, the GF resource library could be com-
pared to two other multilingual resources based
on the above-mentioned formalisms: Lingo Ma-
trix (Bender et al., 2002) for HPSG and Pargram
(Butt et al., 2002) for LFG.

Since the task of developing a multilingual
grammar within such a grammar formalism poses
specific challenges, each system comes equipped
with its own IDE/editor that aids the grammar de-
velopment process. Lingo Matrix has a grammar-
customization system (Bender et al., 2010) and
Pargram has XLFG, a customized IDE (Clément,
2009). The further use of the resources is sup-
ported by a parser, sentence generator and facili-
ties for profiling and regression testing (Oepen and



Flickinger, 1998).
In addition to the cloud-based IDE, GF also has

a desktop IDE, implemented as an Eclipse plugin
(Camilleri, 2011).

5 Future work

The GF grammar editor described here is imple-
mented in JavaScript and runs in the web browser.
While it already supports a useful subset of the
GF grammar notation, we do not expect to cre-
ate a full implementation of GF that runs in the
web browser, but let the editor communicate with
a server running GF.

If a GF server with an appropriate API becomes
available, it should be possible to extend the edi-
tor to support a larger fragment of GF, to do more
complete error checking and in general make more
of the functionality in the existing GF tools acces-
sible directly from the online editor.

Future work on the example-based method in-
cludes combining it with traditional grammar writ-
ing and the possibility to develop more languages
in parallel and use one as an example for the other.
Moreover, since currently the method works for
the case when the linearization type is a category
from the resource library (noun phrase, sentence,
etc), one could also extend the algorithm in or-
der to handle record types comprising more such
syntactic categories. Last but not least, we aim
at covering languages for which large dictionaries
are not available by making the method robust to
unknown words that could be later implemented
by the user.

References
Elnaz Abolahrar. 2011. Multilingual Grammar-Based

Language Training: Computational Methods and
Tools. Master’s thesis, Chalmers University of
Technology.

Krasimir Angelov, Björn Bringert, and Aarne Ranta.
2010. PGF: A Portable Run-time Format for Type-
theoretical Grammars. Journal of Logic, Language
and Information, 19:201–228. 10.1007/s10849-
009-9112-y.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: an open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
COLING-02 on Grammar engineering and evalua-
tion, pages 1–7, Morristown, NJ, USA. Association
for Computational Linguistics.

Emily M. Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar Customization. Research on Language & Com-
putation, 8(1):23–72. 10.1007/s11168-010-9070-1.

J. Bresnan. 1982. The Mental Representation of Gram-
matical Relations. MIT Press.

Björn Bringert, Krasimir Angelov, and Aarne Ranta.
2009. Grammatical framework web service. In
Proceedings of the Demonstrations Session at EACL
2009, pages 9–12, Athens, Greece, April. Associa-
tion for Computational Linguistics.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The
Parallel Grammar project. In COLING-02 on Gram-
mar engineering and evaluation, pages 1–7, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

John J. Camilleri. 2011. The GF Eclipse Plugin.
http://www.grammaticalframework.
org/eclipse/.

Lionel Clément. 2009. XLFG5 Documenta-
tion. https://signes.bordeaux.inria.
fr/xlfg5/doc/en/, October.

Stephan Oepen and Daniel P. Flickinger. 1998. To-
wards Systematic Grammar Profiling Test Suite
Technology Ten Years After. Special Issue on Eval-
uation), 411, 12:411–436.

C. Pollard and I. Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.

Aarne Ranta, Krasimir Angelov, and Thomas Hall-
gren. 2010. Tools for multilingual grammar-based
translation on the web. In Proceedings of the ACL
2010 System Demonstrations, pages 66–71, Upp-
sala, Sweden, July. Association for Computational
Linguistics.

Aarne Ranta, Ramona Enache, and Grégoire Détrez.
2011. Controlled Language for Everyday Use: the
MOLTO Phrasebook. Proceeding of the 2nd Work-
shop on Controlled Natural Languages (CNL 2010).

A. Ranta. 2009a. Grammars as Software Li-
braries. In Y. Bertot, G. Huet, J-J. Lévy,
and G. Plotkin, editors, From Semantics to
Computer Science. Essays in Honour of Gilles
Kahn, pages 281–308. Cambridge University
Press. http://www.cse.chalmers.se/
˜aarne/articles/libraries-kahn.pdf.

Aarne Ranta. 2009b. The GF resource grammar li-
brary. Linguistic Issues in Language Technology,
2(2).

Aarne Ranta. 2011a. GF website. www.
grammaticalframework.org.

Aarne Ranta. 2011b. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford. ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

http://www.grammaticalframework.org/eclipse/
http://www.grammaticalframework.org/eclipse/
https://signes.bordeaux.inria.fr/xlfg5/doc/en/
https://signes.bordeaux.inria.fr/xlfg5/doc/en/
http://www.cse.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://www.cse.chalmers.se/~aarne/articles/libraries-kahn.pdf
www.grammaticalframework.org
www.grammaticalframework.org

	Introduction
	The GF online grammar editor
	Abstract syntax
	Concrete syntax
	Compiling and testing grammars
	Grammars in the cloud

	Example-based grammar writing
	Related work
	Future work

