
Automatic systematic test case generation
for producing reliable grammars

Abstract

We present a method for finding errors in formalized natural language grammars, by automatically
and systematically generating test cases that are intended to be judged by a human oracle. The
method works on a per-construction basis; given a construction from the grammar, it generates a
finite but complete set of test sentences (typically tens or hundreds), where that construction is
used in all possible ways. Our method is an alternative to using a corpus or a treebank, where
no such completeness guarantees can be made. The method is language-independent and is
implemented for the grammar formalism PMCFG, but also works for weaker grammar formalisms.
We evaluate the method on a number of different grammars for different natural languages, with
sizes ranging from toy examples to real-world grammars.

1 Introduction

Grammar engineering has a lot in common with software engineering. Analogous to a program specifica-
tion, we use descriptive grammar books; in place of unit tests, we have gold standard corpora and test
cases for manual inspection. And just like any software, our grammars still contain bugs: grammatical
sentences that are rejected, ungrammatical sentences that are parsed, or grammatical sentences that get the
wrong parse.

There are several ways to test grammars that do not involve human labour. The morphology and lexicon
can be compared against existing resources, or if there are none, a large corpus of any text should give
indications whether the word forms are correct. The same corpus can be used to test the coverage of the
grammar: how many sentences are successfully parsed. However, often we want information beyond
numbers: do the rules we wrote for relative clauses correctly accept all relative clauses and nothing else?
In other words, we are interested in the strong generative capacity (Chomsky, 1963) of the grammar, i.e.
combinations of a string and its structural description.

Here is an example of a typical situation we want to improve. Suppose a grammarian implements
relative clauses, and then comes up with a test suite of sentences with their analyses. The next grammarian
implements relative clauses for another language, and adapts the test set to the new language. Every time
someone touches relative clauses in any language, the test suite will be rerun and verified by someone
who knows the language, or compared to the original gold standard, if there is one. This scheme can fail
for various reasons:

• The original list is not exhaustive: for instance, it tests only “X, who loves me” but not “X, whom I
love”.

• The original list is exhaustive in one language, but not in all: for instance, it started in English and
only included one noun, but in French it would need at least one masculine and one feminine noun.

• The list is overly long, with redundant test cases, and human testers are not motivated to read through.

• A grammarian makes a change somewhere else in the grammar, and does not realize that it affects
relative clauses, and thus does not rerun the appropriate test suite.



We present a method that addresses these problems, by designing a tool that can automatically generate
test cases, given a grammar and a syntactic function that we want to test. Our tool improves on the four
weak points in the following way:

• The set of test cases consists of the syntactic function, applied to all relevant arguments and the result
is placed in all relevant contexts (“relevant” is defined in Section 3).

• The tests cases are automatically generated for each different language. If there is a parameter of
gender or noun class in the grammar, then the program is guaranteed to choose an example of each
of them, when it matters.

• When some feature doesn’t matter, the test cases are pruned: for example, in English we need to
test a reflexive construct with three different 3rd person singular subjects, because the object has to
agree with the subject: “he sees himself”, “she sees herself” and “it sees itself”. With a non-reflexive
object, it is enough to test with only one of he, she, it, or any singular noun or proper name, because
the agreement only shows in the verb form, thus generating both “she sees a dog” and “John sees a
dog” is redundant.

• The grammar is a collection of grammatical categories, syntactic functions and a lexicon, and
everything is interconnected. By changing e.g. the category of prepositions, the changes are
propagated to several functions, e.g. for building adjuncts (“in the house”) and complements (“believe
in something”). This is all part of the grammar, and the chain of effects can be automatically traced.

Our concrete implementation is for a particular grammar formalism, namely parallel multiple context-
free grammars (PMCFG) (Seki et al., 1991), which is the core formalism used by the Grammatical
Framework (GF) (Ranta, 2004). However, the method works for any formalism that is at most as
expressive as PMCFG, including formalisms such as Tree-Adjoining Grammar (TAG) (Joshi et al., 1975)
and Combinatorial Categorial Grammar (CCG) (Steedman, 1988).

2 Grammatical Framework

Grammatical Framework (GF) (Ranta, 2004) is a framework for building multilingual grammar applica-
tions. Its main components are a functional programming language for writing grammars and a resource
library (Ranta, 2009), which, as of March 2018, contains the linguistic details of 40 natural languages.
The library has had over 50 contributors, and it consists of 1900 program modules and 3 million lines of
code. GF is well suited for creating domain-specific systems: examples include mathematics (Caprotti,
2006), legal documents (Camilleri, 2017) and information extraction (Safwat et al., 2015).

A GF grammar consists of an abstract syntax, which is a set of grammatical categories and functions
between them, and one or more concrete syntaxes, which describe how the abstract functions and
categories are linearized, i.e. turned into surface strings. The resulting grammar describes a mapping
between concrete language strings and their corresponding abstract trees. This mapping is bidirectional—
strings can be parsed to trees, and trees linearized to strings. As an abstract syntax can have multiple
corresponding concrete syntaxes, the respective languages can be automatically translated from one to
the other by first parsing a string into a tree and then linearizing the obtained tree into a new string.

Figure 1 shows a small example of a GF abstract grammar. The grammar generates noun phrases for
a lexicon of 15 words (a, the, . . . , without) in four lexical categories, and five functions to construct
phrases. CN stands for common noun, and it can be modified by arbitrarily many adjectives (Adj), e.g.
small blue house is an English linearisation of the abstract syntax tree AdjCN small (AdjCN blue
house). A CN is quantified into a noun phrase (NP) by adding a determiner (Det), e.g. the small house
corresponds to tree DetCN the (AdjCN small house). Alternatively, a Det can also become an
independent noun phrase (as in, (I like) this instead of (I like) this house) using the constructor DetNP.
Finally, we can form an adverb (Adv) by combining a preposition (Prep) with an NP, and those adverbs
can modify yet another CN. We refer to this grammar throughout the paper.



abstract NounPhrases = {
flags startcat = NP ;
cat

NP ; Adv ; -- Non-terminal categories
CN ; Det ; Adj ; Prep ; -- Terminal (lexical) categories

fun
DetNP : Det -> NP ; -- e.g. "this"; "yours"
DetCN : Det -> CN -> NP ; -- e.g. "this house"
PrepNP : Prep -> NP -> Adv ; -- e.g. "without the house"
AdjCN : Adj -> CN -> CN ; -- e.g. "small house"
AdvCN : Adv -> CN -> CN ; -- e.g. "house on a hill"

a, the, this, these, your : Det ;
good, small, blue, ready : Adj ;
house, hill : CN ;
in, on, with, without : Prep ;

}

Figure 1: GF grammar for noun phrases

As examples that help illustrate different testing needs for different languages, let us take three
language-specific phenomena in the scope of our small grammar: preposition contraction in Dutch,
adjective agreement in Estonian and determiner placement in Basque.

2.1 Preposition contraction in Dutch

In Dutch, some prepositions should merge with a single determiner or pronoun, e.g. met dit ‘with this’
becomes hiermee ‘herewith’, but stay independent when the determiner quantifies a noun, e.g. met dit huis
‘with this house’. Other prepositions, such as zonder ‘without’, do not contract with any determiners:
zonder dit ‘without this’ and zonder dit huis ‘without this house’. When testing PrepNP, we would like
to see one preposition that contracts and one that does not, as well as one NP that is a single determiner,
and one that comes from a noun. Since the result of PrepNP is an adverb, which does not inflect any
further, we are happy with just finding the right arguments to PrepNP, no need for contexts. In order to
catch a bug in the function, or confirm there is none, we need the following 4 trees:
PrepNP { with

without
} { DetNP this

DetCN this house
}.

2.2 Adjective agreement in Estonian

In Estonian, most adjectives agree with nouns in case and number in an attributive position. However,
participles are invariable (singular nominative) as attributes but inflect regularly in a predicative position,
and a set of invariable adjectives do not inflect in any position. Furthermore, in 4 of the 14 grammatical
cases, even the regular adjectives only agree with the noun in number, but the case is always genitive. The
following table shows the different behaviours in attributive position, with sinine ‘blue’ as an example of
a regular adjective, and valmis ‘ready’ as an invariable.

(1) sinises majas (2) sinise majaga (3) valmis majas
blue-SG.INE house-SG.INE blue-SG.GEN house-SG.COM ready.SG.NOM house-SG.INE
‘in a blue house’ ‘with a blue house’ ‘in a finished house’
sinistes majades siniste majadega valmis majades
blue-PL.INE house-PL.INE blue-PL.GEN house-PL.COM ready.SG.NOM house-PL.INE
‘in blue houses’ ‘with blue houses’ ‘in finished houses’

Since we are interested in adjectives, choosing AdjCN as the base sounds reasonable—but that only
creates an inflection table, so we must think of a context too. Just like in English, number comes from



the determiner, so we need to wrap the CN in a DetCN with two determiners of different number, for
instance this and these. But we still need an example for one of the 10 cases with normal agreement,
such as inessive (in something), and one of the 4 cases with restricted agreement, such as comitative
(with something). These cases correspond to the English prepositions in and with, so in this abstract
syntax we can use PrepNP with the arguments in and with. This is another showcase of the abstraction
level of GF: in the English concrete syntax, Prep contains a string such as ‘in’ or ‘with’, and PrepNP
concatenates the string from its Prep argument into the resulting adverb, but in Estonian, Prep contains
a case, and PrepNP chooses that case from its NP argument. The following set of 8 trees creates all the
relevant distinctions: PrepNP { in

with
} (DetCN { this

these } AdjCN {
blue
ready } house).

2.3 Determiner placement in Basque

In Basque, there are three different ways to place a determiner into a noun phrase. When a number (other
than 1) or a possessive pronoun acts as a determiner in a complex noun phrase, it is placed between
“heavy” modifiers, such as adverbials or relative clauses, and the rest of the noun phrase. Demonstrative
pronouns, such as this, are placed after all modifiers as an independent word. Number 1, which functions
as an indefinite article, acts like demonstratives, but the definite article is a suffix. If there is a “light”
modifier, such as an adjective, the definite article attaches to the modifier; otherwise it attaches to the
noun. In order to test the implementation of this phenomenon, we need the following 12 trees:

DetCN { the
this
your

} { AdvCN on (DetCN the hill)
∅ } { AdjCN small

∅ } house

2.4 Using our tool

We have seen that, in order to test whether or not we have implemented a linguistic phenomenon correctly,
we take a single function as a base, and describe all combinations of arguments that are needed to test
the function. If the result of the function is an inflection table rather than a fully specified result, then we
need several contexts to squeeze out all the different forms. For example, a CN in English is open for
number—house is really a table {Sg => “house” ; Pl => “houses”}, and applying a determiner
chooses the right form: DetCN this house linearizes to this house and DetCN these house
linearizes to these houses.

The example grammar, with only 15-word lexicon and 5 syntactic functions, generates over 10,000 trees1

up to depth 5. However, as we have seen in the examples above, we can test complex morphosyntactic
phenomena with just a set of 4, 8 or 12 trees, depending on the complexity of the language.

As mentioned previously, the base of a test case is one syntactic function, but often the same sentence
ends up showcasing several functions. In the Estonian example, we start from AdjCN and end up in a
context formed by PrepNP—in fact, these 8 trees are exactly the same that we would’ve chosen to test
PrepNP. Thus, it is possible to shrink the test cases effectively, if one wants to test the whole grammar at
one go.

Of course, such a test set will not catch e.g. individual misspellings, or more systematic bugs in the
morphological paradigms. But there are easier methods to test for such bugs—our goal is to test the more
abstract, syntactic phenomena with as few trees as possible.

3 How the tool works

A GF grammar compiles into a low-level format called PGF (“Portable Grammar Format”), which is
processed by our tool. For each category in the original grammar, the GF compiler introduces a new
category in the PGF for each combination of parameters. For example for English adjectives, we get
A⇒ {Apos, Acomp, Asuperl}, and for Spanish, A⇒ {Apos×sg×masc, . . . , Asuperl×pl×fem}.

This compilation step can dramatically increase the number of categories of the grammar, but it also
removes the need for dealing with these parameters explicitly when we generate test cases. Instead, each

1e.g. DetCN the (AdvCN (PrepNP on (DetCN a (AdjCN small hill)) (AdjCN blue house))
‘the blue house on a small hill’



syntactic function from the original grammar turns into multiple syntactic functions into the PGF – one for
each combination of parameters of its arguments.

We now describe the generation of test cases for a given syntactic function. We assume that all test
cases are trees with the same start (top-level) category, such as NP in our example grammar, or S (for
sentence) for more general grammars. The requirement is that the start category is linearized as one
string only. (In a PMCFG, categories in general can be linearized to vectors of strings, which is perhaps
unsuitable for test cases that are presented to a human.)

Enumerate functions As we explained before, each syntactic function turns into multiple versions,
one for each combination of parameters of its arguments. We test each of these versions seperately. This
enumeration is the main reason we see several test cases in the examples in Section 2.

In order to construct trees that use the syntactic function, we need to supply it with arguments, as well
as put the resulting tree into a context that produces a tree in the correct start category.

Enumerate arguments Some syntactic functions are simply a single lexical item (for example the word
small); in this case just the tree small is our answer. If we choose a function with arguments, such as for
example PrepNP, then we have to supply it with argument trees. Each argument tree needs to be a tree
belonging to the right category (in the example, Prep and NP, respectively).

When we test a function, we want to see whether or not it uses the right information from its arguments,
in the right way. The information that a syntactic function uses is any of the strings that come from
linearizing its arguments. In order to be able to see which string in the result comes from which string
from which arguments, we want to generate test cases that only contain unique strings (no duplicates).

For example, when we test a preposition together with a noun, we want to pick a noun that actually has
different forms (unique strings) for different prepositions, rather than having identical forms, because the
human would not be able to see if the PrepNP function picked the wrong form.

It is often possible to generate one combination of arguments where all strings in the linearizations are
different. However, it is not always possible to this, which is why we in general aim to generate a set of
combinations of arguments, where for each pair of strings from the arguments, there is always one test
case where those strings are different. In this way, if the syntactic function contains a mistake, there is
always one test case that reveals it.

Example: Test cases using AdjCN Let us test the function AdjCN : Adj → CN → CN, and take
a Spanish concrete syntax as an example. Firstly, we need a minimal and representative set of arguments
of types Adj and CN. Consider the nouns first: Spanish has a grammatical gender, so in order to be
representative, we need an example of both masculine and feminine. Out of the small lexicon, house
(casa) is feminine, and hill (cerro) is masculine, so we return those two nouns as the full set of argument
trees in CN.

Secondly, we consider the adjectives. Most commonly, adjectives follow the noun, e.g. casa pequeña
‘small house’, but some adjectives precede the noun, e.g. buena casa ‘good house’. Thus in order to cover
the full spectrum of adjective placement, we need one premodifier and one postmodifier adjective. We
pick the words good and small as the arguments of type Adj.

Now, our full set of test cases are AdjCN applied to the cross product of { goodsmall} × {
house
hill

}. Note
that CN is unspecified for number, because it is still waiting for a determiner (e.g. this or these) to
complete it into an NP. Thus all the test cases contain both singular and plural variants, and by linearizing
these 4 trees, we get the 8 strings shown in Figure 2.

Enumerate contexts The third and last enumeration we perform when generating test cases is to
generate all possible uses of a function. After we provide a function with arguments, we need to put the
result into a context, so that we can generate a single string from the result (a sentence). We do this for all
trees we have generated so far.

The important thing here is that the generated set of contexts shows all the possible different ways
the tree can be used. For example, for a test tree with an inflection table of size 4, we would generate 4
different sentences in which each of the 4 inflections is used.



AdjCN good house AdjCN good hill
(SG) buena casa (SG) buen cerro
(PL) buenas casas (PL) buenos cerros
AdjCN small house AdjCN small hill
(SG) casa pequeña (SG) cerro pequeño
(PL) casas pequeñas (PL) cerros pequeños

Figure 2: Agreement and placement of adjectives in attributive position

By context, we mean a tree in the start category, with a hole of type CN. A tree of type CN can be
plugged into the hole to form a tree in the start category. In this grammar, the only category above CN is
NP, and there is only one way that a CN can end up in an NP: by using the function DetCN : Det →
CN → NP.

Let us return to our running example. So far the relevant features have been grammatical gender an
adjective placement—we have 4 trees with all combinations of {masculine, feminine} and {pre,post}.
The resulting trees have variable number, and we need to generate contexts that specify that number.
In the PGF, the function DetCN actually comes in two versions: one for singular and one for plural
determiners. Both of these use their arguments in different ways (different strings from the hole appear in
the result). So, both versions of DetCN lead to one context each. The final contexts are DetCN this _
and DetCN these _. Note that we do not have to enumerate all possible first arguments to DetCN. We
insert the 4 test cases into the holes, and get 8 trees in total: {DetCN this (AdjCN good house),
..., DetCN these (AdjCN small hill)}.

So, what we want to compute is, given the result category T of the syntactic function, and the start
category S of the grammar, a minimal set of contexts in the start category S with hole of type T, such
that any string appearing in the linearization of T also appears somewhere in the linearization of S. We
compute this by setting up a system of equations for each category C in the grammar: for each C, we
define all the relevant contexts with hole type C in terms of all the relevant contexts with hole type C’
for other categories C’ that use C. So, the answer for each category is expressed in terms of the answer
for other categories. In general, this system of equations is recursive, and we use a fixpoint iteration to
compute the smallest solution.

Pruning For the previous example, we did not need any pruning: the cross product of all relevant
distinctions produced a minimal and representative set of trees. Now assume we have a larger grammar,
which also covers adjectives in a predicative position: e.g. esta casa es pequeña ‘this house is small’
and esta casa es buena ‘this house is good’. The distinction which made us choose small and good in
the first place is now gone: in predicative position, both adjectives behave the same. Thus, in this larger
grammar, when we want to test adjectives, it is necessary to include two examples when in attributive
position, but only one when in predicative position.

4 General features of PMCFG: unused, equal, erased or empty fields

Aside from concrete language-dependent phenomena, there are more general, engineering questions a
grammar writer may ask. For instance, say that our concrete type for a CN in Dutch is an inflection table
from case to string, we would like to know if (a) a given string field is unreachable from the start category;
(b) any two fields always contain the same string; or (c) some fields are always the empty string. A yes
answer to any of these may indicate a bug in the grammar.

In Dutch, nominative and accusative are only different for pronouns, so for this grammar we would
indeed find out that case is redundant: all nominative and accusative fields would be identical. As
grammarians, we could decide to keep the distinction for further extension of the grammar—maybe we
want to add pronouns in the future—or remove it as redundant.

GF has the expressivity of PMCFG, which means that it is possible to erase arguments: say that there is
a bug, AdjCN : Adj → CN → CN never actually adds the adjective to the new CN, in which case



AdjCN blue house and house are linearized identically. Instead of testing every single function,
we would like to know if there are any functions in the grammar that behave like this.

The analyses mentioned in this section are implemented in a similar way to the method for enumerating
all contexts.

5 Use cases and evaluation

Here is a typical use for the tool. Let us take the noun phrase grammar for Dutch, and pick a single
function, say AdvCN. We generate test cases, which include the following trees:

• AdvCN (PrepNP next to (DetNP your)) hill ‘hill next to yours’

• AdvCN (PrepNP next to (DetNP your)) house ‘house next to yours’

In Dutch, the words hill and house have different genders, and the word yours has to agree in gender
with the antecedent: (de) heuvel naast de jouwe and (het) huis naast het jouwe. The test cases reveal a
bug, where DetNP your picks a gender too soon, instead of leaving it open in an inflection table. We
implement a fix by adding gender as a parameter to the Adv type, and have AdvCN choose the correct
form based on the gender of the CN.

After implementing the fix, we run a second test case generation: this time, not meant for human eyes,
but just to compare the old and new versions of the grammar. We want to make sure that our changes have
not caused new bugs in other functions. The simplest strategy is to generate test cases for all functions in
both grammars, and only show those outputs that differ between the grammars. After our fixes, we get the
following differences:

• DetCN the (AdvCN (PrepNP next to (DetNP your)) hill)

– de heuvel naast het jouwe
– de heuvel naast de jouwe

• DetCN the (AdvCN (PrepNP without (DetNP this)) hill)

– de heuvel zonder dit
– de heuvel zonder deze

We notice a side effect that we may not have thought of: the gender is retained in all adverbs made of NPs
made of determiners, so now it has become impossible to say “the hill without that” and pointing to a
house. So we do another round of modifications, compute the difference (to the original grammar or to
the intermediate), and see if something else broke.

Concrete grammar→ Dutch Basque Estonian
↓ Abstract grammar #funs+lex #trees #total #uniq #total #uniq #total #uniq
Noun phrases 5+15 >10,000 21 18 33 27 40 36
Phrasebook 130+160 >480,000 2006 1892 2808 2650 1513 1314
Resource grammar 217+446 >500 billion 59,316 51,145 278,092 216,058 60,600 38,517

Table 1: Test cases for all functions in three grammars

Resource grammar function Dutch Basque Estonian
#trees in contexts #combinations of args #t #c #t #c

ComparA ‘younger than me’ 11 3 36 6 21 3
RelNP ‘a cat that I saw’ 25 9 90 10 123 12
ReflVP ‘see myself’ 1655 23 10838 128 1608 13

Table 2: Test cases for some individual functions in the resource grammar



In order to evaluate our method, we generate test cases for grammars of varying sizes, using the three
languages presented earlier: Dutch, Estonian and Basque. These languages come from different language
families, and cover a wide range of grammatical complexity. Dutch, an Indo-European language, has
fairly simple nominal and verbal morphology, but the rules for handling word order, prefixes and particles
in verb phrases are somewhat intricate. Estonian and Basque both have rich morphology, each featuring
14 nominal cases, but Basque verb morphology is much more complex, with agreement in subject, object
and indirect object. Contrary to our expectations, we found Dutch and Estonian behaving similarly to
each other and Basque significantly worse, both in execution time and examples generated.

Table 1 shows the number of generated trees for in total for all syntactic functions in the three grammars,
and Table 2 shows some example functions from the resource grammar. As stated earlier, we do not
consider generating test cases for all functions an optimal way of testing a whole resource grammar
from scratch; this gives merely a baseline reduction from all possible trees up to a reasonable depth. We
introduce the grammars and comment on the results in the following sections.

5.1 Grammars

The first grammar is the toy example introduced earlier in this article: NounPhrases with 5 syntactic
functions and 15 words in the lexicon. We wrote the concrete syntaxes from scratch for each of the
languages, instead of using the full resource grammar and reducing it to only noun phrases. All three
concrete syntaxes were completed in less than an hour, by an experienced grammarian with knowledge in
all three languages.

The second grammar is a mid-size application grammar: Phrasebook (Ranta et al., 2012), with
42 categories such as Person, Currency, Price and Nationality, 160-word lexicon and
130 functions with arguments. As opposed to the trees that we have seen so far, which only contain
syntactic information, the trees in the Phrasebook are much more semantic: for example, the abstract
tree for the sentence “how far is the bar?” in the Phrasebook is PQuestion (HowFar (ThePlace
Bar)), in contrast to the resource grammar tree UttQS (UseQCl (TTAnt TPres ASimul) PPos

(QuestIComp (CompIAdv (AdvIAdv how IAdv (PositAdvAdj far A))) (DetCN (DetQuant DefArt

NumSg) (UseN bar N)))) for the same sentence. Limiting up to depth 3, the Phrasebook grammar
produces over 480,000 trees2.

The third grammar is a restricted version of the GF resource grammar, with 84 categories, 217 syntactic
functions and 446 words in the lexicon. Since all the languages did not have a complete implementation,
we simply took the subset of functions that was common, and removed manually a couple of rare
constructions and words that are potentially distracting. However, we should not limit the lexicon too
much, because we may miss important distinctions in some languages—to give a hypothetical example,
some grammar may have a bug that shows up only in animate nouns which end in a consonant. This
subset of the resource grammar produces hundreds of billions of trees up to depth 5.

5.2 Results

Execution time We ran all the experiments on a MacBook Air with 1,7 GHz processor and 8 GB RAM.
For the smaller grammars, all languages took just seconds to run. For the resource grammar, Dutch and
Estonian finished in 3–4 minutes. However, the Basque resource grammar is noticeably more complex,
and creating test trees for all functions took several hours. We ran the experiment in smaller batches over
two days, and noticed a lot of variance: functions that handle e.g. noun phrases, adjectives and adverbs
ran in a few minutes, but a function involving verb phrases could take an hour just by itself.

Finding bugs We read through the test sentences of the small grammar in all the three languages. For
Dutch we had a native speaker; for Estonian an intermediate non-native, and for Basque, a beginner. None
of the three grammars had been tested systematically before—(Listenmaa and Kaljurand, 2014) report
testing the morphological paradigms extensively against existing resources, and syntactic functions with a
treebank of 425 trees.

2Application grammars are usually much more compact than resource grammars, hence depth 3 covers already a lot of
relevant trees.



We have been developing the tool by testing it on the Dutch resource grammar, and during 4 months,
we have committed 16 bugfixes in the GF main repository. (In the name of honesty, a few of the bugs
were caused by our earlier “fixes”—that was before we had implemented the comparison against an older
version of the grammar!)

The Basque resource grammar is still a work in progress, and the test sentences showed serious problems
in morphology. We thought it premature to get a fluent speaker to evaluate the grammar, because the errors
in morphology would probably make it difficult to assess syntax separately. We think that the best course
of action is to evaluate the morphological paradigms against existing resources, fix the implementation,
and then concentrate on syntax. The Phrasebook was implemented using the resource grammar, so the
same problems apply.

We read through the first 500 sentences from Estonian Phrasebook, which took around 20 minutes. We
found 3 errors in the inflection of individual words (they did not come from the resource lexicon, which
was tested, but were implemented separately in the grammar); one error of type “Spaniard restaurant”,
and one suggestion for a more idiomatic construction. As expected, Phrasebook sentences were easier to
read, and made more sense semantically than sentences from the resource grammar.

5.3 Previous work

Traditionally, GF grammars are tested by the grammarians themselves, much in the way described in
the introduction of this article. An example human-written treebank can be found in (Khegai, 2006,
p. 136–142). For testing the coverage of the grammars, grammarians have used treebanks such as the UD
treebank (Nivre et al., 2016) and Penn treebank (Marcus et al., 1993), and for testing morphology, various
open-source resources have been used, such as morphological lexica from the Apertium project (Forcada
et al., 2011).

As an example of other grammar formalisms, (Butt et al., 1999, pp. 212–213) describe common
methods of testing the LFG formalism: similarly to GF, they use a combination of human-written test suites
meant to cover particular phenomena, and external larger corpora to test the coverage. As a difference
from GF testing tradition, their human-written test suites include also ungrammatical sentences: those that
the grammar should not be able to parse. However, their tests are only meant for monolingual grammars,
whereas GF tests are for multilingual grammars, so they are stored as trees. In other words, GF tests only
what the grammar outputs, not what it parses. (Bender et al., 2010) describe a system for creating and
testing HPSG (Pollard and Sag, 1994) grammars, by using a detailed questionnaire about the features of the
given language. This system achieves both generating the grammar rules and testing them simultaneously,
whereas our method relies on an existing grammar. On the other hand, our system is more general to any
kinds of grammars, including application grammars where the distinctions are not syntactic but semantic.

6 Conclusion and future work

We have presented method for automatically generating minimal and exhaustive sets of test cases for
testing grammars. We have found the tool useful in large-scale grammar writing, in a context where
grammars need to be reliable.

One problem we have encountered is that the test sentences from resource grammars are often non-
sensical semantically, and hence a native speaker might intuitively say that a sentence is wrong, even
though it is just unnatural. For instance, the function AdvQVP covers constructions such as “you did
what?”. However, the function itself is completely general and can take any verb phrase and any question
adverb, thus bizarre combinations like “you saw the dog why” may appear in the generated test cases. For
future work, we plan to use an external treebank to guide the algorithm to pick trees that also make sense
semantically.

So far the only mode of operation is generating test cases for a single function. As future work, we
are planning to add a separate mode for testing the whole grammar from scratch: intentionally create
trees that test several functions at once. We have an implementation only for GF grammars so far, but the
general method works for any grammar formalism that can be compiled into PMCFG. GF already supports
reading context-free grammars, so testing any existing CFG is a matter of some preprocessing.



References
[Bender et al.2010] Emily M Bender, Scott Drellishak, Antske Fokkens, Michael Wayne Goodman, Daniel P Mills,

Laurie Poulson, and Safiyyah Saleem. 2010. Grammar prototyping and testing with the lingo grammar matrix
customization system. In Proceedings of the ACL 2010 system demonstrations, pages 1–6. Association for
Computational Linguistics.

[Butt et al.1999] Miriam Butt, Tracy Holloway King, Marı́a-Eugenia Niño, and Frédérique Segond. 1999. A Gram-
mar Writer’s Cookbook. CSLI Publications Stanford.

[Camilleri2017] John J. Camilleri. 2017. Contracts and Computation–Formal modelling and analysis for norma-
tive natural language. Ph.d. thesis, University of Gothenburg, Gothenburg, Sweden, October.

[Caprotti2006] Olga Caprotti. 2006. Webalt! deliver mathematics everywhere. In Society for Information Tech-
nology & Teacher Education International Conference, pages 2164–2168. Association for the Advancement of
Computing in Education (AACE).

[Chomsky1963] Noam Chomsky. 1963. Formal properties of grammars. Handbook of mathematical psychology,
pages 323–418.

[Forcada et al.2011] Mikel L Forcada, Mireia Ginestı́-Rosell, Jacob Nordfalk, Jim O’Regan, Sergio Ortiz-Rojas,
Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema Ramı́rez-Sánchez, and Francis M Tyers. 2011.
Apertium: a free/open-source platform for rule-based machine translation. Machine translation, 25(2):127–
144.

[Joshi et al.1975] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. 1975. Tree Adjunct Grammars. Journal
of Computer and System Sciences, 10(1):136–163.

[Khegai2006] Janna Khegai. 2006. Language engineering in Grammatical Framework (GF). Ph.D. thesis,
Chalmers University of Technology.

[Listenmaa and Kaljurand2014] Inari Listenmaa and Kaarel Kaljurand. 2014. Computational Estonian Grammar
in Grammatical Framework. In 9th SALTMIL workshop on free/open-source language resources for the machine
translation of less-resourced languages.

[Marcus et al.1993] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large
annotated corpus of english: The penn treebank. Computational linguistics, 19(2):313–330.

[Nivre et al.2016] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christo-
pher D. Manning, Ryan T. McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, et al. 2016. Universal
dependencies v1: A multilingual treebank collection. In Proceedings of the 10th edition of the Language Re-
sources and Evaluation Conference (LREC 2016).

[Pollard and Sag1994] Carl Pollard and Ivan Sag. 1994. Head-driven phrase structure grammar. University of
Chicago Press.

[Ranta et al.2012] Aarne Ranta, Ramona Enache, and Grégoire Détrez. 2012. Controlled language for everyday
use: The molto phrasebook. In Proceedings of the Second International Conference on Controlled Natural
Language, CNL’10, pages 115–136, Berlin, Heidelberg. Springer-Verlag.

[Ranta2004] Aarne Ranta. 2004. Grammatical Framework. Journal of Functional Programming, 14(2):145–189.

[Ranta2009] Aarne Ranta. 2009. The GF Resource Grammar Library. Linguistics in Language Technology, 2.

[Safwat et al.2015] Hazem Safwat, Normunds Gruzitis, Ramona Enache, and Brian Davis. 2015. Embedded con-
trolled languages to facilitate information extraction from eGov policies. In Proceedings of the 17th Interna-
tional Conference on Information Integration and Web-based Applications & Services (iiWAS).

[Seki et al.1991] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On Multiple
Context-Free Grammars. Theoretical Computer Science, 88(2):191–229.

[Steedman1988] Mark Steedman. 1988. Combinators and grammars. In Categorial Grammars and Natural Lan-
guage Structures, pages 417–442.


	Introduction
	Grammatical Framework
	Preposition contraction in Dutch
	Adjective agreement in Estonian
	Determiner placement in Basque
	Using our tool

	How the tool works
	General features of pmcfg: unused, equal, erased or empty fields
	Use cases and evaluation
	Grammars
	Results
	Previous work

	Conclusion and future work

