
Grammatical Framework:

Programming with Multilingual Grammars

Aarne Ranta

Slides for the GF book (CSLI, Stanford, 2011)

Preamble

GF, Grammatical Framework

A special-purpose programming language for writing grammars.

Supports the complexities found in different natural languages.

Provides engineering tools for large projects involving many program-

mers.

Supports abstractions and linguistic generalizations,

Works for single languages and across multiple languages.

Uses of GF

Multilingual translation systems

Language-based human-computer interaction

Creation of computational linguistic resources.

Target users

GF is a typed functional programming language, like Haskell and ML.

Particularly designed for programmers and computer scientists.

But also for linguists interested in multilinguality and generalizations.

Web resources

The book’s website, http://www.grammaticalframework.org/gf-book

• most of the code examples contained in the book

• clickable links to the URL’s given in the book

• these slides

GF website, http://www.grammaticalframework.org

• an updated reference manual with hyperlinks

• the full Resource Grammar Library API

• the source code for the GF system and the Resource Grammar

Library

• executable binaries for the GF system

http://www.grammaticalframework.org/gf-book
http://www.grammaticalframework.org

Download and install

Zero-click: http://www.grammaticalframework.org/demos/gfse/

• grammar editor in the cloud

One-click: http://www.grammaticalframework.org/download/

• binary packages for Linux, Mac OS, and Windows (GF version 3.2)

Many many clicks: latest developer source code

darcs get --lazy http://www.grammaticalframework.org/ GF

cd GF

cabal install

http://www.grammaticalframework.org/demos/gfse/
http://www.grammaticalframework.org/download/

What the book is about

Computer programs that process natural language.

Main focus: multilingual systems

• translation systems

• applications with one language at a time

– natural language interfaces

– spoken dialogue systems

– language learning aids

– software localization

Background fields

Computational linguistics: the purpose

Functional programming: the method

None of these is presupposed!

What is in the slides

Tutorial: Chapters 1 to 6

Larger grammars and applications: Chapters 7 to 10

Not covered: reference manual

Suggestions of projects

One-week level: the ”Foods” grammar (Chapter 3) for a new lan-
guage

Three-week level: one of

• the ”miniature resource” (Chapter 9)
• a query system with an embedded grammar (Chapter 7)
• an interface to a formal language (Chapter 8)

Ten-week level: resource grammar morphology and lexicon (Chapter
10) for a new language

Twenty-week level: complete resource grammar (Chapter 10) (with
a written report, equivalent to a Mater’s thesis)

For ”reserved” languages: extend the library coverage or build appli-
cations.

Chapter 1: Introduction

Outline

• grammars vs. statistics

• the cost of grammars

• multilinguality

• semantic actions

• application grammars vs. resource grammars

• history of GF

• related work

The role of grammars in language processing

How can we make computers process human language?

Symbolic approach: write processing rules, such as grammars

Statistical approach: learn from data by statistics and machine learn-

ing

The role of grammars in human language skills

Traditional school: learn the rules of grammar.

• explicit knowledge

• you know why you say in a certain way

• not how you learn your first language

More recent school: learn by hearing, reading, using.

• implicit knowledge

• first language

Grammars of programming languages

An important part of a compiler

The grammar is the definition of the programming language

Grammars of natural languages

A research problem - not a definition.

A theory formed by observing an already existing system.

The system is maybe not entirely coherent:

All grammars leak.

(Sapir 1921).

Thus: either incomplete (not covering all of the language) or over-

generating (covering expressions that in reality are ”ungrammatical”).

Still useful

For a human, a grammar provides a shortcut: its general rules replace

a vast amount of training material.

Grammar usually improves the quality of the language produced by a

human.

The same applies to computers: statistical models usually suffer from

sparse data.

Sparse data

Inflection forms: French verbs have 51 forms easily defined by gram-

mar; but maybe only a few of them appear in a corpus.

Word sequences: n-grams of words are sparse for large n.

• direct consequences for long-distance dependencies

Long-distance dependencies: agreement

Example: French adjectives agree in gender with nouns, which can be

far apart.

English:

my father immediately became very worried

my mother immediately became very worried

French:

mon père est immédiatement devenu très inquiet

ma mère est immédiatement devenue très inquiète

Google translate for the latter (August 2010):

ma mère est immédiatement devenu très inquiet

Long-distance dependencies: discontinuous constituents

Example: German compound verbs, e.g. um+bringen ”kill” (literally,

”bring around”)

German

er bringt mich um

er bringt seinen besten Freund um

English

he kills me

he kills his best friend

Google translate for the latter (August 2011):

he brings to his best friend

Grammars vs. statistics

Don’t guess if you know: if there’s a grammar, use it.

• e.g. basic facts of inflection, agreement, and word order

All grammars leak: you may need more than just the grammar.

• the input may be out of grammar

• but smoothing may be used to guarantee robustness

Hybrid systems combine statistical and grammar-based methods.

The cost of grammars

Expensive to develop

• high skills

• a lot of work (PhD thesis or more)

Expensive to run

• parsing worse than linear (cubic for context-free, exponential for

context-sensitive)

GF aims to tackle both of these problems.

Reducing the development cost: software engineering

Static type system detects many programming errors automatically

Module system supports division of labour

Functional programming enables powerful abstractions

Libraries enable building new grammars on earlier ones

Compilers convert GF grammars to other formats

Information extraction converts resources from other formats to GF

Improving run-time performance

Key: optimizing compilers, algorithm development, libraries

GF is equivalent to PMCFG (Parallel Multiple Context-Free Gram-

mars)

Theoretically, parsing in GF and PMCFG is polynomial (O(nk)) and

the exponent k depends on the grammar.

Practical grammars are often linear: e.g. the Resource Grammar Li-

brary (RGL)

Linear parsing in the RGL

GF resource grammar parsing speed msec/token (by Krasimir An-

gelov). Slowest: Finnish, German, Italian; fastest: Scandinavian lan-

guages, English.

Multilinguality

A GF grammar can deal with several languages at the same time.

GF grammar = abstract syntax + concrete syntaxes

Abstract syntax: trees that capture semantically relevant structure

Concrete syntax relates trees with linear strings

Cf. compilers of programming languages

• programmers write strings

• the parser converts strings to trees

• the rest of the compiler manipulates trees

Varying the concrete syntax

Tree

+

/ \

2 3

Strings

2 + 3 -- infix (Java, C)

(+ 2 3) -- prefix (LISP)

iconst_2 ; iconst_3 ; iadd -- postfix (Java Virtual Machine assembly)

0000 0101 0000 0110 0110 0000 -- postfix (Java Virtual Machine binary)

the sum of 2 and 3 -- English

la somme de 2 et de 3 -- French

2:n ja 3:n summa -- Finnish

Compilation via abstract syntax

Parse Java string to tree

Linearize tree to JVM string

parse + linearize iconst_2

2 + 3 ======> / \ ===========> iconst_3

2 3 iadd

Compilers vs. GF

GF is more powerful (PMCFG, not just context-free)

GF is reversible: the same grammar defines both parsing and lineariza-

tion

GF is multilingual: one abstract + several concrete

Compiling natural language

2 + 3 the sum of 2 and 3

\ /

(plus 2 3)

/ \

iconst_2 2:n ja 3:n summa

iconst_3

iadd

GF code for addition expressions

Abstract syntax

fun plus : Exp -> Exp -> Exp

Concrete syntaxes (Java, JVM, and English)

lin plus x y = x ++ "+" ++ y

lin plus x y = x ++ ";" ++ y ++ ";" ++ "iadd"

lin plus x y = "the sum of" ++ x ++ y

Details will follow later.

Word alignment via common abstract syntax

Typical differences in concrete syntax

Words

Inflectional morphology

Word order

Discontinuous constituents

Morphology

English nouns have four forms (house, houses, house’s, houses’)

French nouns have two forms (maison, maisons)

Finnish nouns have 26 forms (talo, talon, taloa, taloksi, talona, talossa,

talosta, taloon, talolla, talolta, talolle, talotta, talot, talojen, taloja,

taloiksi, taloina, taloissa, taloista, taloihin, taloilla, taloilta, taloille,

taloitta, taloine, taloin) plus up to 3,000 more (taloiksenikohan,...)

Agreement

The choice of a word form depends on other words occurring in the

sentence.

English nouns vary in number, in agreement to e.g. a numeral (one

man vs. five men).

German nouns also vary in case, in agreement to e.g. a preposition,

and adjectives agree in gender as well.

Noun phrases with prepositions in English and German

Semantic actions

In compilers: operations on abstract syntax trees.

In tools like YACC, this is fused with parsing rules:

Exp ::= Exp "+" Exp {return $1 + $3}

The semantic action is in curly brackets: compute the sum.

In general: any program, such as

• answer a question

• consult a database

• dialogue system

Interoperability

Semantic actions are expressed in a host language (Java, C, Haskell...)

GF parsing can return trees as host language objects.

This is available in many languages: Haskell, Java, JavaScript, C,

Python

Application grammars and resource grammars

Application grammar

• semantic grammar: abstract syntax reflects semantics

• built by domain expert

• typically: small, restricted domain

Resource grammar

• syntactic grammar: abstract syntax follows linguistic structure

• built by linguist

• unrestricted domain, ”the whole language”

Two components of quality

Domain semantics: odd in French is impair rather than bizarre, étrange,

dépareillé, in mathematics.

Linguistics: impair is inflected impair, impairs, impaire, impaires and

appears after the noun (nombre impair).

Two kinds of trees

the sum of 2 and 3 is prime

Maths application grammar tree: predicate and its arguments

Prime (Sum (Num 2) (Num 3))

Resource grammar tree: sentence structure with tense etc.

UseCl

(TTAnt TPres ASimul) PPos

(PredVP

(AdvNP

(DetCN (DetQuant DefArt NumSg) (UseN sum_N))

(PrepNP of_Prep

(ConjNP and_Conj

(BaseNP (UsePN n2_PN) (UsePN n3_PN)))))

(UseComp (CompAP (PositA prime_A))))

Abstractions in semantic trees

The predicate Prime can be expressed with an adjective, as in English

and German

x is prime

x ist unteilbar

or also with a noun, both in English and Finnish

x is a prime number

x on alkuluku

The resource trees are different, but the application tree is the same.

Syntax is complicated

Example: German word order

• main clause: x ist unteibar

• inverted clause: ist x unteilbar

• subordinate clause: x unteilbar ist

wenn x unteilbar ist, dann ist x unteilbar

if x is prime, then x is prime

Moreover: agreement in number and person, mood, tense,...

An approximative rule

lin Prime x = \\ord,mod =>

let

ist = case <mod,x.n> of {

<Ind, Sg> => "ist" ;

<Ind, Pl> => "sind" ;

<Conj,Sg> => "sei" ;

<Conj,Pl> => "seien"

}

in case ord of {

Main => x.s ! Nom ++ ist ++ "unteilbar" ;

Sub => x.s ! Nom ++ "unteilbar" ++ ist ;

Inv => ist ++ x.s ! Nom ++ "unteilbar"

}

A precise rule using the resource grammar

In full linguistic detail.

lin Prime x = UseCl

(TTAnt TPres ASimul) PPos

(PredVP x (UseComp (CompAP (PositA unteilbar_A))))

With the high-level resource grammar API.

lin Prime x = mkS (mkCl x unteilbar_A)

The GF Resource Grammar Library

Syntactic structure and morphology.

For 20 languages (in August 2011).

Designed to be usable by domain experts without linguistic training.

Has been used for mathematics, dialogue systems, tourist phrasebooks,

museum object descriptions, pharmaceutical patents,...

The Resource Grammar API

Syntax: common for all languages,

lin Prime x = mkS (mkCl x prime_A)

lin Prime x = mkS (mkCl x unteilbar_A)

lin Prime x = mkS (mkCl x alkuluku_N)

Morphology: separate (but similar) for each language:

prime_A = mkA "prime"

alkuluku_N = mkN "alkuluku"

unteilbar_A = mkA "unteilbar"

In the book

Simple application grammars: Chapters 2-4

Applications using resource grammar: Chapters 5-8

Resource grammars: Chapters 9-10

Translation equivalence

Resource grammar does not guarantee sameness of meaning!

Application grammars are (usually) designed to guarantee this.

The problem can be reliably solved only on restricted domains.

Early history of GF

Type-theoretical grammar (Ranta 1991, 1994)

• Montague grammar (1974) extended to constructive type the-

ory (Martin-Löf 1984)

• implemented in ALF (Another Logical Framework), as a natural

language interface to proof systems

• generation of six languages written in SML and later in Haskell

Grammatical Framework as a language of its own

• first implemented 1998 at Xerox Research, Grenoble

• generic grammar formalism, reversible grammars

• abstract syntax formalism = Logical Framework

Some milestones

1998: v 0.1, first release, ”old notation”

2001: Resource Grammar Library started (English, Swedish, Russian)

2002: v 1.0, revised syntax more like a functional language, still used

2004: parsing complexity solved (Ljunglöf)

2004: v 2.0, module system

2009: incremental parsing (Angelov)

2009: v 3.0, separate run-time format (PGF) and binary object files

Some application projects

1998: Multilingual Document Authoring at Xerox: phrasebook, medi-

cal drug descriptions, query language (Dymetman, Lux, Ranta)

2000: Extensible Proof Text Editor GF-Alfa (Hallgren and Ranta)

2002: Software specifications in KeY (Hähnle, Johannisson, Ranta)

2004: Multimodal dialogue systems (TALK project: Ljunglöf, Bringert,

Lemon)

2005: Mathematical exercises (WebALT project: Saludes, Casanellas,

Caprotti)

2010: MOLTO project (Multilingual On-Line Translation)

Related work

GF is rooted in at least four research traditions:

• logic: type theory and logical frameworks

• formal linguistic syntax

• compiler construction

• functional programming

Abstract and concrete syntax in linguistics

Tectogrammatical and phenogrammatical structure (Curry 1961)

Montague grammar (Montague 1974)

Abstract Categorial Grammar (de Groote 2001)

HOG (Higher-Order Grammar, Pollard 2004)

Lambda Grammar (Muskens 2001)

Compiler construction

Abstract and concrete syntax (McCarthy 1962, Landin 1967, Appel

1998)

Multi-source multi-target compiler: GCC (GNU Compiler Collection,

Stallman 2004).

Linguistic grammar formalisms

DCG (Definite Clause Grammars, Pereira and Warren 1980)

LFG (Lexical-Functional Grammars, Bresnan 1982)

HPSG (Head-Driven Phrase Structure Grammars, Pollard and Sag

1994),

TAG (Tree-Adjoining Grammars, Joshi 1985)

CCG (Combinatory Categorial Grammar, Steedman 1988)

Core Language Engine (Alshawi 1992)

MRS (Minimal Recursion Semantics, Copestake & al. 2001)

Embedded grammars

DCG embedded Prolog: Pereira and Shieber (1987), Gazdar and Mel-

lish (1990), and Blackburn and Bos (2003)

The Zen toolkit (Huet 2005): library for morphology and lexicon im-

plementations in the OCAML programming language.

NLTK (Natural Language Toolkit, Bird & al. 2009): tools for language

processing in Python.

Grammar formalism implementations

NL-YACC (Ishii & al. 1994)

LKB for HPSG (Lexical Knowledge Builder, Copestake 2002)

XLE for LFG (Xerox Linguistic Environment)

Multilingual resource grammars

CLE in DCG (Core Language Engine, Alshawi & al. 1992, Rayner &

al. 2000)

Regulus (Rayner & al. 2006)

LinGO Matrix in HPSG (Bender and Flickinger 2004, later renamed to

DELPH-IN)

Pargram in LFG (Butt 2003)

Chapter 2: Basic concepts of
multilingual grammars

Outline

• BNF grammars and their use in the GF system

• GF functionalities: parsing, generation, translation

• abstract vs. concrete syntax

• abstract syntax trees vs. parse trees

• limitations of the BNF format

• string-based GF grammars as a generalization of BNF

• the module structure of GF

• free variation

• limitations of string-based GF

• visualization of trees and word alignments

• lexing, unlexing, and character encoding

The BNF grammar format

BNF = Backus-Naur Format = context-free grammars

The most widely known grammar formalism.

In computer science: to specify programming languages

In linguistics: as pedagogical tool, but also e.g. speech recognition

systems

Full GF is more powerful, but BNF is an interesting subset.

The GF system supports a BNF notation.

Example: foodEng.cf

Pred. Comment ::= Item "is" Quality

This. Item ::= "this" Kind

That. Item ::= "that" Kind

Mod. Kind ::= Quality Kind

Wine. Kind ::= "wine"

Cheese. Kind ::= "cheese"

Fish. Kind ::= "fish"

Very. Quality ::= "very" Quality

Fresh. Quality ::= "fresh"

Warm. Quality ::= "warm"

Italian. Quality ::= "Italian"

Expensive. Quality ::= "expensive"

Delicious. Quality ::= "delicious"

Boring. Quality ::= "boring"

BNF notation

Each line is a labelled rule.

The general form of a rule is

Label . Category ::= Production

The production consists of

• categories (unquoted identifiers) a.k.a. nonterminals

• tokens (quoted strings) a.k.a. terminals

Labels and categories are identifiers (letter followed by letters, digits,

underscores).

Parsing and linearization

The string

this Italian cheese is expensive

is parsed to the tree

Pred (This (Mod Italian Cheese)) Expensive

This tree is linearized to thev string

Tree, graphically

Abstract tree vs. parse tree

Abstract tree vs. parse tree

Abstract tree:

• nodes and leaves are labels

Parse tree:

• nodes are categories

• labels are tokens

Given a GF grammar, an abstract tree determines a parse tree, but a

parse tree can correspond to many abstract trees (how?).

Using the GF shell

$ gf

* * *
* *

* *
*
*
* * * * * * *
* * *
* * * * * *
* * *

* * *

This is GF version 3.2.
License: see help -license.
Bug reports:
http://code.google.com/p/grammatical-framework/issues/list

Languages:
>

GF commands

The first command you may want to give:

> help

More help on each command:

> help parse

Short names of commands:

> h p

Testing a grammar in the GF system

import = i the grammar file:

> import foodEng.cf

linking ... OK

parse = p a string in quotes:

> parse "this Italian cheese is very expensive"

Pred (This (Mod Italian Cheese)) (Very Expensive)

Use help p to see options.

Incremental parsing

Use the tab key to get next words and their completions:

> p "<TAB>

that this

Later in the sentence you get

> p "this cheese is <TAB>

Italian boring delicious expensive fresh very warm

> p "this cheese is e<TAB>

> p "this cheese is expensive

Linearization

linearize = l: from tree to string

> linearize Pred (This Fish) Delicious

this fish is delicious

Use help l to see options.

Random generation

generate random = gr: a random tree

> generate_random

Pred (That Cheese) Italian

Use help gr to see options.

Pipes

Feed the output of one command as input to a next one

> generate_random | linearize

that expensive delicious boring wine is expensive

Trace option -tr, to see an intermediate step

> generate_random -tr | linearize

Pred (That Fish) Warm

that fish is warm

Generate many

Many random trees

> generate_random -number=100 | linearize

All trees (up to a certain depth)

> generate_trees | linearize

that cheese is boring

that cheese is delicious

that cheese is expensive

that cheese is fresh

...

Use help to see more options.

A BNF grammar for Italian

Pred. Comment ::= Item "è" Quality

This. Item ::= "questo" Kind

That. Item ::= "quel" Kind

Mod. Kind ::= Kind Quality

Wine. Kind ::= "vino"

Cheese. Kind ::= "formaggio"

Fish. Kind ::= "pesce"

Very. Quality ::= "molto" Quality

Fresh. Quality ::= "fresco"

Warm. Quality ::= "caldo"

Italian. Quality ::= "italiano"

Expensive. Quality ::= "caro"

Delicious. Quality ::= "delizioso"

Boring. Quality ::= "noioso"

Same abstract syntax

Pred (This Cheese) (Very Expensive)

this Italian cheese is very expensive

questo formaggio italiano è molto caro

So can we translate via the abstract syntax?

Different abstract syntax

Pred (This (Mod Italian Cheese)) (Very Expensive)

this Italian cheese is very expensive

Pred (This (Mod Cheese Italian)) (Very Expensive)

questo formaggio italiano è molto caro

Alas, the order of arguments is different in modification!

Translation with BNF grammars

Do it by hand:

> import foodEng.cf

> parse "this cheese is expensive"

Pred (This Cheese) Expensive

> empty

> import foodIta.cf

> linearize Pred (This Cheese) Expensive

questo formaggio è caro

You must empty the grammar environment because the abstract syntax
has changed...

What we would like to do

Use a pipe:

> parse "this cheese is expensive" | linearize

questo formaggio è caro

But this is not possible:

• the BNF grammars are unrelated

• they have distinct abstract syntaxes

Solution: proceed from BNF to the full GF.

Category skeleton

Ignore terminals:

Comment ::= Item "is" Quality

Comment ::= Item "è" Quality

This gives the category skeleton

Comment ::= Item Quality

And from

Quality ::= "expensive"

Quality ::= "caro"

What is the category skeleton?

Category skeleton, cont’d

In the rules

Quality ::= "expensive"

Quality ::= "caro"

there are no nonterminals on the right hand side, so we get

Quality ::=

But modification rules

Kind ::= Quality Kind

Kind ::= Kind Quality

have different category skeletons.

Separating abstract and concrete syntax

One rule in BNF,

Pred. Comment ::= Item "is" Quality

becomes two rules in GF,

fun Pred : Item -> Quality -> Comment ;

lin Pred item quality = item ++ "is" ++ quality ;

The fun is a function for building trees.

The lin is its linearization rule.

Function type

The category skeleton

Comment ::= Item Quality

gives the function type

Item -> Quality -> Comment

Value type: Comment

Argument types: Item and Quality

Right associativity:

A -> B -> C ≡≡ A -> (B -> C)

Linearization rules

fun Pred : Item -> Quality -> Comment ;

lin Pred item quality = item ++ "is" ++ quality ;

The variables item and quality: linearizations of arguments.

Concatenation: ++,

NB. one could use any variable names, e.g. x and y.

Sharing abstract syntax

Abstract syntax

fun Mod : Quality -> Kind -> Kind

English linearization

lin Mod quality kind = quality ++ kind

Italian linearization

lin Mod quality kind = kind ++ quality

The module system

Abstract syntax modules: fun rules

Concrete syntax modules: lin rules

We also need rules for categories:

• cat in abstract syntax (to declare a category)

• lincat in concrete syntax (to define the type of its linearization)

The abstract syntax Food

abstract Food = {

flags startcat = Comment ;

cat

Comment ; Item ; Kind ; Quality ;

fun

Pred : Item -> Quality -> Comment ;

This, That : Kind -> Item ;

Mod : Quality -> Kind -> Kind ;

Wine, Cheese, Fish : Kind ;

Very : Quality -> Quality ;

Fresh, Warm, Italian,

Expensive, Delicious, Boring : Quality ;

}

The concrete syntax FoodEng

concrete FoodEng of Food = {
lincat
Comment, Item, Kind, Quality = Str ;

lin
Pred item quality = item ++ "is" ++ quality ;
This kind = "this" ++ kind ;
That kind = "that" ++ kind ;
Mod quality kind = quality ++ kind ;
Wine = "wine" ;
Cheese = "cheese" ;
Fish = "fish" ;
Very quality = "very" ++ quality ;
Fresh = "fresh" ;
Warm = "warm" ;
Italian = "Italian" ;
Expensive = "expensive" ;
Delicious = "delicious" ;
Boring = "boring" ;

}

The concrete syntax FoodIta

concrete FoodIta of Food = {
lincat
Comment, Item, Kind, Quality = Str ;

lin
Pred item quality = item ++ "è" ++ quality ;
This kind = "questo" ++ kind ;
That kind = "quel" ++ kind ;
Mod quality kind = kind ++ quality ;
Wine = "vino" ;
Cheese = "formaggio" ;
Fish = "pesce" ;
Very quality = "molto" ++ quality ;
Fresh = "fresco" ;
Warm = "caldo" ;
Italian = "italiano" ;
Expensive = "caro" ;
Delicious = "delizioso" ;
Boring = "noioso" ;

}

Import a multilingual grammar

Import any number of files with the same abstract syntax:

> import FoodEng.gf FoodIta.gf

- compiling Food.gf... wrote file Food.gfo

- compiling FoodEng.gf... wrote file FoodEng.gfo

- compiling FoodIta.gf... wrote file FoodIta.gfo

linking ... OK

Languages: FoodEng FoodIta

>

Separate compilation: each module gets its .gfo file (GF Object

file).

Translating in GF

First import the grammars, either on the same line or separately,

> import FoodEng.gf

> import FoodIta.gf

Then translate by piping:

> p -lang=Eng "this delicious wine is Italian" | l -lang=Ita

questo vino delizioso è italiano

> p -lang=Ita "quel pesce è molto caro" | l -lang=Eng

that fish is very expensive

Convention:

concrete = abstract + ISO 639-3 language code

Multilingual generation

> gr | l

that delicious warm fish is fresh

quel pesce caldo delizioso è fresco

> gr | l -treebank

Food: Pred (That (Mod Delicious (Mod Warm Fish))) Fresh

FoodEng: that delicious warm fish is fresh

FoodIta: quel pesce caldo delizioso è fresco

Translation quiz

A simple ”end-user application” in the shell: tq = translation quiz.

> tq -from=FoodEng -to=FoodIta

Welcome to GF Translation Quiz. The quiz is over when you

have done at least 10 examples with at least 75 % success.

* that wine is very boring

quel vino è molto noioso

Yes. Score 1/1

* that cheese is very warm

questo fromage è molto caldo

No, not questo fromage è molto caldo, but

quel formaggio è molto caldo

Score 1/2

The structure of grammar modules

The main parts:

• module header with module type (abstract of concrete ofA) and

module name (Food)

• module body with judgements

Forms of judgement:

• abstract: cat and fun

• concrete: lincat and cat

• both: flags

Type checking

A concrete syntax is complete w.r.t. an abstract syntax, if it contains

• a lincat for each cat,

• a lin for each fun.

It is well-typed if

• all types used in lincat judgements are valid linearization types,

• all linearization rules define well-typed functions.

See the book for details.

Groups of judgements

Judgements are terminated by semicolons.

Keywords can be shared:

cat C ; D ; ≡≡ cat C ; cat D ;

Right-hand-sides cn be shared:

fun f, g : A ; ≡≡ fun f : A ; g : A ;

Names

Each judgement introduces a name, which is the first identifier in the

judgement.

Names are in scope in the entire module and can only be introduced

once.

Comments

-- after two dashes, anything until a newline

{- after left brace and dash, anything until dash and right brace -}

How GF is more expressive than BNF

The separation of concrete and abstract syntax allows

• permutation: changing the order of constituents

• suppression: omitting constituents

• reduplication: repeating constituents

(Even more expressive power will be introduced in Chapters 3 and 6.)

The copy language

Reduplication permits the non-context-free language {x x | x <- (a|b)*}.

abstract CopyAbs = {

cat S ; AB ;

fun s : AB -> S ;

end : AB ;

a,b : AB -> AB ;

}

concrete Copy of CopyAbs = {

lincat S, AB = Str ;

lin s x = x ++ x ;

end = [] ; -- empty token list

a x = "a" ++ x ;

b x = "b" ++ x ;

}

Permutation

Needed in Food for the modification rule.

Increases strong generative capacity, (to define relations between

trees and strings).

Reduplication also increases weak generative capacity, (to define

sets of strings)

Exercise on permutation

Exercise. * Define the reverse operation as a GF grammar by using

one abstract syntax and two concrete syntaxes. Translation between

the concrete syntaxes should read a sequence of symbols and return

them in the opposite order. For instance, a b c is translated c b a.

Suppression and metavariables

Pronoun as new primitive - not so interesting semantically

fun Pron : Item

lin Pron = "it"

Pronoun as a function that hides its interpretation

fun Pron : Item -> Item

lin Pron r = "it"

Parsing a pronoun

> parse "it is very expensive"

Pred (Pron ?) (Very Expensive)

The metavariable ? is sent further to anaphora resolution

Metavariables in testing

To control random and exhaustive generation.

> generate_random Pred (This ?) Italian

generates only trees of the form this X is Italian where X is a random

Kind.

Likewise, translation quiz can be given such a term as an argument,

to create focused exercises.

Free variation

One abstract syntax, several linearizations:

lin Delicious = "delicious" | "exquisit" | "tasty"

NB. this is only valid on the abstraction level chosen for this semantic

grammar.

Alternative ways to order a ticket

lin Ticket X Y =

((("I" ++ ("would like" | "want") ++ "to get" |

("may" | "can") ++ "I get" |

"can you give me" |

[]) ++

"a ticket") |

[]) ++

"from" ++ X ++ "to" ++ Y ++

("please" | []) ;

Ambiguity

A string is ambiguous if it parses to more than one tree.

Example rule creating ambiguity:

fun With : Kind -> Kind -> Kind ;

lin With kind1 kind2 = kind1 ++ "with" ++ kind2 ;

> parse "fish with cheese with wine"

With (With Fish Cheese) Wine

With Pizza (With Fish Wine)

Avoiding ambiguity by design

One can force right associativity of With:

fun With : Kind -> ComplexKind -> ComplexKind

But be careful: the ambiguity is maybe real in natural language!

Irrelevant ambiguity

The same in English and Italian

lin With kind1 kind2 = kind1 ++ "with" ++ kind2 ;

lin With kind1 kind2 = kind1 ++ "con" ++ kind2 ;

Now irrelevant for translation (but perhaps not for deeper semantics).

Ambiguity in translation

English

do you want this wine

Italian

vuoi questo vino (singular, familiar),

vuole questo vino (singular, polite),

volete questo vino (plural, familiar), and

vogliono questo vino (plural, polite).

Catalan numbers

Exercise. * How many trees are there for an expression of form Kind

with ... with Kind for 2, 3, and 4 with’s? This series of numbers

is known as the Catalan numbers, and it is a common pattern of

counting in combinatorics; see en.wikipedia.org/wiki/Catalan number

for other examples.

We are not there yet

We can

• define some non-context-free languages

• ignore word order in abstract syntax

We can’t

• ignore language-dependent morphological features

• deal with discontinuos constituents

Example: morphological features

Add

fun Pizza : Kind

Everything works fine in English, but Italian gets

*questo pizza

*pizza italiano

instead of questa pizza, pizza italiana, because pizza is feminine and

Italian has gender agreement.

Wanted: gender in Italian concrete syntax, without changing abstract

syntax and English concrete syntax.

A grammar-writing task

Exercise. Write a concrete syntax of Food for your favourite language.

Use random generation to see how correct it becomes. Don’t care

about ungrammatical sentences due to gender and related things yet;

just make a list of things that come out wrong.

Visualization of abstract syntax trees

vt = visualize tree prints

> parse "this cheese is very expensive" | vt

GF displays a few lines of graphviz code.

How to see the tree?

Save output in files

You can save any output by wf = write file:

> parse "this..." | vt | wf -file=tree.dot

Now process this in the Unix shell,

$ dot -Tpng tree.dot >tree.png

Finally, view the result,

$ open tree.png -- in MacOS

$ eog tree.png -- in Ubuntu Linux

Shell escapes

Without leaving GF, prefix command with !

> ! dot -Tpng tree.dot >tree.png

> ! open tree.png

Another handy one:

> ! clear

Put it all together

Use vt with a flag for viewer program:

> parse "this cheese is boring" | vt -view=open

Similarly, visualize parse trees by vp = visualize parse

> parse "this cheese is boring" | vp -view=open

or dependency trees by vd = visualize dependency

> parse "this cheese is boring" | vd -view=open

or show word alignment, aw = align words:

> p "this Italian wine is very expensive" | aw -view=open

Word alignment

System pipes

Escape ?: the escaped command receives its input from a GF pipe

> gr | l | ? wc -c

counts characters, whereas

> gr | l | ? espeak -f

sends the string to the speech synthesizer espeak.

Lexing and unlexing

Str is not strings of characters, but token lists.

Default representation: tokens separated by spaces

Example: the string

"this wine is delicious"

represents the token list

"this", "wine", "is", "delicious"

which the parser can recognize

Lexing problems

The string

"(12 + (3 * 4))"

by default represents the token list

"(12", "+", "(3", "*", "4))"

But we want

"(", "12", "+", "(", "3", "*", "4", ")", ")"

For this, we need a lexer.

String processing

Generic string processing command ps = put string can take a lexer

as an option:

> put_string -lexcode "(12 + (3 * 4))"

(12 + (3 * 4))

> put_string -lexcode "(12 + (3 * 4))" | parse

EPlus (EInt 12) (ETimes (EInt 3) (EInt 4))

Similarly, unlexer

> put_string -unlexcode "(12 + (3 * 4))"

(12 + (3 * 4))

Some lexers and unlexers

lexer description
words (default) tokens as separated by spaces or newlines
chars treat each character as a token
lexcode lex as program code (uses Haskell’s lex)
lextext use conventions on punctuation and capital letters

unlexer description
unwords (default) separate tokens by spaces
unchars glue tokens together without spaces
unlexcode format as code (spacing, indentation)
unlextext format as text: punctuation, capitals

Character sets

English: ASCII

Many European languages: iso-latin-1

Most languages of the world: Unicode

GF uses internally 32-bit Unicode

Character encoding

Standard choice: UTF-8

The GF module body must then contain

flags coding = utf8 ;

as the default (for historical reasons) is iso-latin-1.

The generated gfo and pgf files are in UTF-8.

Example: Hindi

Transliterations

Use ASCII instead of Unicode

Can be handy in editing grammar files

Also in shells missing fonts, etc.

More on this in Chapter 10.

Chapter 3: Parameters, tables,
and records

Outline

• morphological variation

• variable vs. inherent features

• agreement

• parameters, tables, and records

• pattern matching

• data structures in linearization types

• functional programming in GF by operation definitions

• discontinuous constituents

The problem of morphological variation

Number of nouns in English

this wine is Italian

these wines are Italian

Context-free solution: split the relevant categories

Comment ::= Item_Sg "is" Quality

Comment ::= Item_Pl "are" Quality

Item_Sg ::= "this" Kind_Sg

Item_Pl ::= "these" Kind_Pl

Explosion in categories

In Italian, both number and gender matter

Comment ::= Item_Sg_Masc "è" Quality_Sg_Masc

Comment ::= Item_Sg_Fem "è" Quality_Sg_Fem

Comment ::= Item_Pl_Masc "sono" Quality_Pl_Masc

Comment ::= Item_Pl_Fem "sono" Quality_Pl_Fem

Parametrized rules

Take out the suffixes as parameters, and introduce variables

Comment ::= Item(Sg,g) "è" Quality(Sg,g)

Comment ::= Item(Pl,g) "sono" Quality(Pl,g)

This is the solution in Definite Clause Grammars.

In GF, we want parameters only in concrete syntax (since they depend

on language).

Parameters and tables

New judgement form: parameter type definition

param Number = Sg | Pl

New form of type: table types

Number => Str

read, ”table from numbers to strings”.

Inflection tables

number form
singular pizza
plural pizze

represented as the term

table {Sg => "pizza" ; Pl => "pizze"}

of type

Number => Str

Selection

To access a value in a table,

table {Sg => "pizza" ; Pl => "pizze"} ! Pl

computes to the string "pizze".

Several parameters

Italian adjectives

Gender => Number => Str

where the type Gender is defined by

param Gender = Masc | Fem

The inflection of the adjective caldo (”warm”)

table {

Masc => table {Sg => "caldo" ; Pl => "caldi"} ;

Fem => table {Sg => "calda" ; Pl => "calde"}

}

Pattern matching

Variable g

table {g => table {Sg => "grave" ; Pl => "gravi"}}

Wildcard (variable that is not used)

table {_ => table {Sg => "grave" ; Pl => "gravi"}}

Sugar for one-branch table

\\p,...,q => t ≡≡ table {p => ... table {q => t} ...}

Variable vs. inherent features

Nouns in both English and Italian have both singular and plural forms.

Gender is different: Italian nouns have it, just one.

Cf. a dictionary entry for pizza:

pizza, pl. pizze: n.f.

In other words: pizza is a feminine noun (n.f.) with the plural form

(pl.) pizze.

For Italian nouns, number is variable and gender is inherent.

Agreement

For Italian adjectives, both number and gender are variable.

In modification, the gender of the adjective is determined by the noun.

Agreement, in general:

• X has inherent F

• Y has variable F

• X passes Y to F

Records and record types

Italian nouns can be represented by records,

{s = table {Sg => "pizza" ; Pl => "pizze"} ; g = Fem}

This record has the record type

{s : Number => Str ; g : Gender}

s and g are labels.

Field = label + type (in record types), or label + value (records)

Projection

To access the value in a record, the projection operator dot (.)

{s = "these" ; n = Pl}.n ⇓ Pl

Thus together with selection

{s = table {Sg => "zia" ; Pl => "zie"} ; g = Fem}.s ! Sg ⇓ "zia"

(Italian zia, ”aunt”).

Linearization types

Now generalized from Str to parameters, tables, and records of any

complexity.

Thus in Italian,

lincat

Item = {s : Str ; g : Gender ; n : Number} ;

Kind = {s : Number => Str ; g : Gender} ;

Quality = {s : Gender => Number => Str} ;

The Foods grammar

abstract Foods = {

flags startcat = Comment ;

cat

Comment ; Item ; Kind ; Quality ;

fun

Pred : Item -> Quality -> Comment ;

This, That, These, Those : Kind -> Item ;

Mod : Quality -> Kind -> Kind ;

Wine, Cheese, Fish, Pizza : Kind ;

Very : Quality -> Quality ;

Fresh, Warm, Italian,

Expensive, Delicious, Boring : Quality ;

}

We have just added These, Those, Pizza.

English Foods: types

Linearization types

lincat

Comment = {s : Str} ;

Item = {s : Str ; n : Number} ;

Kind = {s : Number => Str} ;

Quality = {s : Str} ;

It’s a good habit to use records {s : Str} instead of plain Str.

Then it is easier to add fields if needed.

English Foods: rules

Obvious:

lin

This kind = {s = kind.s ! Sg ; n = Sg} ;

Mod qual kind = {s = table {n => qual.s ++ kind.s ! n}} ;

Notice how n is passed in Mod.

Predication rule is slightly more complex:

lin Pred item qual = {

s = item.s ++

table {Sg => "is" ; Pl => "are"} ! item.n ++

qual.s

} ;

The middle term is in fact the verb be.

English Foods: words

Records and tables as dictated by the types

lin

Wine = {s = table {Sg => "wine" ; Pl => "wines"}} ;

Cheese = {s = table {Sg => "cheese" ; Pl => "cheeses"}} ;

Fish = {s = _ => "fish"} ;

Warm = {s = "warm"} ;

Can we make this more compact?

Functional programming in GF

The golden rule of functional programming:

Whenever you find yourself programming by copy and paste,

define a function instead.

Example

Instead of writing

Wine = {s = table {Sg => "wine" ; Pl => "wines" }} ;

Cheese = {s = table {Sg => "cheese" ; Pl => "cheeses"}} ;

define a regular noun function regNoun, which factors out all shared

parts:

Wine = regNoun "wine" ;

Cheese = regNoun "cheese" ;

Operation definitions

Yet another judgement in concrete syntax,

oper f :t = e

Thus:

oper regNoun : Str -> {s : Number => Str} =

\word -> {s = table {Sg => word ; Pl => word + "s"}} ;

using a lambda abstract

\x -> t

and gluing (+) of two tokens into one.

Gluing vs. concatenation

"foo" + "bar" ⇓ "foobar" (one token, "foobar")

"foo" ++ "bar" ⇓ "foo bar" (list of two tokens, "foo", "bar")

Usually distinguished by a space, but this is relative to lexer.

Notations for functions

Application by juxtaposition: f x

Function types A -> B like in abstract syntax

Lambda with many arguments

\x1, ..., xn -> t ≡≡ \x1 -> ... \ xn -> t

similarly to tables \\x1, ..., xn => t

The English Foods grammar: parameters and opera-
tions

concrete FoodsEng of Foods = {

param

Number = Sg | Pl ;

oper

det : Number -> Str ->

{s : Number => Str} -> {s : Str ; n : Number} =

\n,det,noun -> {s = det ++ noun.s ! n ; n = n} ;

noun : Str -> Str -> {s : Number => Str} =

\man,men -> {s = table {Sg => man ; Pl => men}} ;

regNoun : Str -> {s : Number => Str} =

\car -> noun car (car + "s") ;

adj : Str -> {s : Str} =

\cold -> {s = cold} ;

copula : Number => Str =

table {Sg => "is" ; Pl => "are"} ;

The English Foods grammar: linearization types

lincat

Comment, Quality = {s : Str} ;

Kind = {s : Number => Str} ;

Item = {s : Str ; n : Number} ;

The English Foods grammar: linearizations

lin

Pred item quality = {s = item.s ++ copula ! item.n ++ quality.s} ;

This = det Sg "this" ;

That = det Sg "that" ;

These = det Pl "these" ;

Those = det Pl "those" ;

Mod quality kind = {s = \\n => quality.s ++ kind.s ! n} ;

Wine = regNoun "wine" ;

Cheese = regNoun "cheese" ;

Fish = noun "fish" "fish" ;

Pizza = regNoun "pizza" ;

Very a = {s = "very" ++ a.s} ;

Fresh = adj "fresh" ;

Warm = adj "warm" ;

Italian = adj "Italian" ;

Expensive = adj "expensive" ;

Delicious = adj "delicious" ;

Boring = adj "boring" ;

Testing inflection and operations in GF

Flags for linearization

Foods> linearize -table Wine

s Sg : wine

s Pl : wines

Compute concrete; you must retain oper’s instead of compiling them

away.

> import -retain FoodsEng.gf

> compute_concrete (regNoun "wine").s ! Pl

"wines"

Partial application

Function

fun This : Kind -> Item

Full application: expression of a ground type

lin This kind = det Sg "this" kind

Partial application: expression of a function type

lin This = det Sg "this"

Notice: you need to design the type of the oper as

Number -> Str -> {s : Number => Str} -> {s : Str ; n : Number}

rather than

{s : Number => Str} -> Number -> Str -> {s : Str ; n : Number}

Discontinuous constituents

Records with more strings than one.

Example: English verb phrase (VP) used both in declaratives and ques-

tions

John is old

is John old

Discontinuous in the VP.

It has a finite verb part (is) and a complement part (old).

A minimal grammar

cat

S ; NP ; VP ;

fun

Decl : NP -> VP -> S ;

Quest : NP -> VP -> S ;

John : NP ;

IsOld : VP ;

lincat

S, NP = Str ;

VP = {verb,comp : Str} ;

lin

Decl np vp = np ++ vp.verb ++ vp.comp ;

Quest np vp = vp.verb ++ np ++ vp.comp ;

IsOld = {verb = "is" ; comp = "old"} ;

John = "John" ;

Expressiveness of discontinuity

Exercise. * Write a grammar that generates the (non-context-free)

language anbncn, i.e. a language whose strings are the empty string, a

b c, a a b b c c, etc, where there are always as many a’s as b’s and

c’s.

Exercise. * Write a grammar that generates the (non-context-free)

language ambncmdn, i.e. where the number of a’s and c’s is the same

and so is the number of b’s and d’s. This language is well-known as a

model of Swiss German, originally presented by Shieber in 1985 in his

argument that Swiss German is not context-free.

Now we can!

Exercise. + Now we have defined a part of GF that is complete in

the sense that pretty much any GF grammar can be written in it. So

you can try and write a concrete syntax of Foods for any language you

please, and make it correct.

Nonconcatenative morphology: Arabic

Semitic languages, e.g. Arabic: kataba has forms kaAtib, yaktubu, ...

Traditional analysis:

• word = root + pattern

• root = three consonants (radicals)

• pattern = function from root to string (notation: string with vari-

ables F,C,L for the radicals)

Example: yaktubu = ktb + yaFCuLu

Words are datastructures rather than strings!

Datastructures for Arabic

Roots are records of strings.

Root : Type = {F,C,L : Str} ;

Patterns are functions from roots to strings.

Pattern : Type = Root -> Str ;

A special case is filling: a record of strings filling the four slots in a

root.

Filling : Type = {F,FC,CL,L : Str} ;

This is enough for everything except middle consonant duplication (e.g.

FaCCaLa).

Applying a pattern

A pattern obtained from a filling intertwines the records:

fill : Filling -> Pattern = \p,r ->

p.F + r.F + p.FC + r.C + p.CL + r.L + p.L ;

Middle consonant duplication also uses a filling but duplicates the C

consonant of the root:

dfill : Filling -> Pattern = \p,r ->

p.F + r.F + p.FC + r.C + r.C + p.CL + r.L + p.L ;

Arabic lexicon

Possible although tedious

yaktubu = fill

{F = "ya" ; FC = "" ; CL = "u" ; L = "u"}

{F = "k" ; C = "t" ; L = "b"}

kuttiba = dfill

{F = "" ; FC = "u" ; CL = "i" ; L = "a"}

{F = "k" ; C = "t" ; L = "b"}

We would like to write something like

yaktubu = word "yaFCuLu" "ktb"

kuttiba = word "FuCCiLa" "ktb"

Next chapter!

Chapter 4: Modular and scal-
able grammar writing

Outline

• reusable resource modules

• data abstraction

• smart paradigms

• pattern matching over strings

• operation overloading

• module extension and inheritance

• algebraic datatypes

• record extension, subtyping, and tuples

• prefix-dependent choices

• compile-time vs. run-time string operations

Reusable resource modules

New module type: resource

Judgements contained: param, oper

Can be reused in different concrete modules by opening:

resource MorphoEng = {

oper regNoun ...

}

concrete FoodsEng of Foods = open MorphoEng in {

lin Wine = regNoun "wine" ;

}

The Prelude

A resource module useful for many languages, containing things like

Boolean and string operations

resource Prelude = {

param

Bool = True | False ;

oper

init : Str -> Str = ... -- all characters except the last

}

Example: an Italian resource

resource ResIta = open Prelude in {

param

Number = Sg | Pl ;

Gender = Masc | Fem ;

oper

NounPhrase : Type =

{s : Str ; g : Gender ; n : Number} ;

Noun : Type = {s : Number => Str ; g : Gender} ;

Adjective : Type = {s : Gender => Number => Str} ;

det : Number -> Str -> Str -> Noun -> NounPhrase =

\n,m,f,cn -> {

s = table {Masc => m ; Fem => f} ! cn.g ++

cn.s ! n ;

g = cn.g ;

n = n

} ;

noun : Str -> Str -> Gender -> Noun =

\vino,vini,g -> {

s = table {Sg => vino ; Pl => vini} ;

g = g

} ;

adjective : (nero,nera,neri,nere : Str) -> Adjective =

\nero,nera,neri,nere -> {

s = table {

Masc => table {Sg => nero ; Pl => neri} ;

Fem => table {Sg => nera ; Pl => nere}

}

} ;

regAdj : Str -> Adjective = \nero ->

let ner : Str = init nero

in

adjective nero (ner+"a") (ner+"i") (ner+"e") ;

copula : Number => Str =

table {Sg => "è" ; Pl => "sono"} ;

}

Local definitions

Syntax:

let c : t = d in e

Example from resIta:

regAdj : Str -> Adjective = \nero ->

let ner : Str = init nero

in

adjective nero (ner+"a") (ner+"i") (ner+"e") ;

Many-argument function types

Arguments of the same type can be shared, by using variables

(nero,nera,neri,nere : Str) -> Adjective

(_,_,_,_ : Str) -> Adjective

are actually the same as

Str -> Str -> Str -> Str -> Adjective

The Italian Foods

concrete FoodsIta of Foods = open ResIta in {

lincat

Comment = {s : Str} ;

Quality = Adjective ;

Kind = Noun ;

Item = NounPhrase ;

lin

Pred item quality =

{s = item.s ++ copula ! item.n ++

quality.s ! item.g ! item.n} ;

This = det Sg "questo" "questa" ;

That = det Sg "quel" "quella" ;

These = det Pl "questi" "queste" ;

Those = det Pl "quei" "quelle" ;

Mod quality kind = {

s = \\n => kind.s ! n ++ quality.s ! kind.g ! n ;

g = kind.g

} ;

Wine = noun "vino" "vini" Masc ;

Cheese = noun "formaggio" "formaggi" Masc ;

Fish = noun "pesce" "pesci" Masc ;

Pizza = noun "pizza" "pizze" Fem ;

Very qual = {s = \\g,n => "molto" ++ qual.s ! g ! n} ;

Fresh =

adjective "fresco" "fresca" "freschi" "fresche" ;

Warm = regAdj "caldo" ;

Italian = regAdj "italiano" ;

Expensive = regAdj "caro" ;

Delicious = regAdj "delizioso" ;

Boring = regAdj "noioso" ;

}

Data abstraction

Problem: implementing inflection paradigms.

Goals

• easy to use for all words, not just regular

• easy to modify with different sets of forms

Solution:

• abstract data types (hiding records and tables)

• constructor operations

Type synonym

Define the type Noun and use it consistently

oper Noun : Type = {s : Number => Str} ;

Define a constructor operation, the worst-case function that covers

all possible nouns

oper mkNoun : Str -> Str -> Noun = \x,y -> {

s = table {

Sg => x ;

Pl => y

}

} ;

Regular and irregular nouns

The regular oper is defined by using the constructor

oper regNoun : Str -> Noun =

\word -> mkNoun word (word + "s") ;

lin House = regNoun "house" ;

lin Mouse = mkNoun "mouse" "mice" ;

Changing the internal representation

Suppose we want to add case (nominative and genitive) to English

nouns:

param Case = Nom | Gen ;

oper Noun : Type = {s : Number => Case => Str} ;

The worst-case function must be redefined but will retain its type

signature:

oper mkNoun : Str -> Str -> Noun = \x,y -> {

s = table {

Sg => table {

Nom => x ;

Gen => x + "’s"

} ;

Pl => table {

Nom => y ;

Gen => case y of {

_ + "s" => y + "’" ;

_ => y + "’s"

}

}

} ;

Old definitions are still valid:

oper regNoun : Str -> Noun = \x -> mkNoun x (x + "s") ;

Case expressions and string matching

Inside mkNoun, we used a case expression,

case y of {

_ + "s" => y + "’" ;

_ => y + "’s"

}

There are several patterns, some corresponding to regular expres-

sions.

String matching patterns

• the disjunctive pattern

P | Q, matches everything that P or Q matches

• the concatenation pattern

P + Q, matches any string of form st where P matches s and Q

matches t

• the variable pattern

x, matches anything and binds the variable x to this

• the wildcard pattern

, matches anything

• the alias pattern

index as

x@P, matches anything that P matches and binds the variable x to

this

• the string pattern

"foo", matches just the string "foo"

• the one-character pattern

?, matches any string whose lenght is exactly one (Unicode) char-

acter

Case expressions as table selections

Case expressions for parameter types are in fact syntactic sugar:

case e of {...} ≡≡ table {...} ! e

Predictable variations

Between the completely regular dog-dogs and the completely irregular

mouse-mice, we have

• nouns ending with y : fly -flies, except if a vowel precedes the y :

boy -boys

• nouns ending with s, ch, and a number of other endings: bus-buses,

leech-leeches

Special paradigms

The first solution

noun_y : Str -> Noun = \fly ->

mkNoun fly (init fly + "ies") ;

noun_s : Str -> Noun = \bus ->

mkNoun bus (bus + "es") ;

But this solution has some drawbacks:

• it can be difficult to select the correct paradigm

• it can be difficult to remember the names of all different paradigms

Smart paradigms

A better solution: let GF select the paradigm

regNoun : Str -> Noun = \w ->

let

ws : Str = case w of {

_ + ("a" | "e" | "i" | "o") + "o" => w + "s" ;

_ + ("s" | "x" | "sh" | "o") => w + "es" ;

_ + ("a" | "e" | "o" | "u") + "y" => w + "s" ;

x + "y" => x + "ies" ;

_ => w + "s"

}

in

mkNoun w ws

German Umlaut

Exercise. Implement the German Umlaut operation on word stems.

The operation has the type Str -> Str. It changes the vowel of the

stressed stem syllable as follows: a to ä, au to äu, o to ö, and u to ü.

You can assume that the operation only takes syllables as arguments.

Test the operation to verify that it correctly changes Arzt to Ärzt,

Baum to Bäum, Topf to Töpf, and Kuh to Küh.

Arabic morphology revisited: encoding roots by strings

This is just for the ease of programming and writing lexica.

F = first letter, C = second letter, L = the rest.

getRoot : Str -> Root = \s -> case s of {

F@? + C@? + L => {F = F ; C = C ; L = L} ;

_ => Predef.error ("cannot get root from" ++ s)

} ;

The as-pattern x@p matches p and binds x.

The error function Predef.error stops computation and displays the

string. It is a typical catch-all value.

Encoding patterns by strings

Patterns are coded by using the letters F, C, L.

getPattern : Str -> Pattern = \s -> case s of {

F + "F" + FC + "CC" + CL + "L" + L =>

dfill {F = F ; FC = FC ; CL = CL ; L = L} ;

F + "F" + FC + "C" + CL + "L" + L =>

fill {F = F ; FC = FC ; CL = CL ; L = L} ;

_ => Predef.error ("cannot get pattern from" ++ s)

} ;

A high-level lexicon building function

Dictionary entry: root + pattern.

getWord : Str -> Str -> Str = \r,p ->

getPattern p (getRoot r) ;

Now we can try:

> cc getWord "ktb" "yaFCuLu"

"yaktubu"

> cc getWord "ktb" "muFaCCiLu"

"mukattibu"

Separating operation types and definitions

Instead of

oper regNoun : Str -> Noun =

\s -> mkNoun s (s + "s") ;

one can have ”two judgements”

oper regNoun : Str -> Noun ;

oper regNoun s = mkNoun s (s + "s") ;

and only display the first to the library user.

This is formalized in interface/instance modules (Chapter 5).

Overloading of operations

Operations that have different types can be given the same name.

The type checker performs overload resolution.

The oper’s have to be grouped together:

oper mkN = overload {

mkN : (dog : Str) -> Noun = regNoun ;

mkN : (mouse,mice : Str) -> Noun = mkNoun ;

}

This is used all the time in the GF Resource Grammar Library.

Module extension and inheritance

A module can extend another and inherit its contents.

This creates module hierarchies.

Example:

• base module: Comments

• two extensions: Foods and Clothes

• putting the extensions together: Shopping

The base module

General syntax and vocabulary for comments

abstract Comments = {

flags startcat = Comment ;

cat

Comment ; Item ; Kind ; Quality ;

fun

Pred : Item -> Quality -> Comment ;

This, That, These, Those : Kind -> Item ;

Mod : Quality -> Kind -> Kind ;

Very : Quality -> Quality ;

}

Comments on different kinds of things

abstract Foods = Comments ** {

fun

Wine, Cheese, Fish, Pizza : Kind ;

Fresh, Warm, Italian,

Expensive, Delicious, Boring : Quality ;

}

abstract Clothes = Comments ** {

fun

Shirt, Jacket : Kind ;

Comfortable, Elegant : Quality ;

}

Both kinds of shopping

abstract Shopping = Foods, Clothes ;

Inheritance vs. opening

The general syntax of module headers

moduletype name = extends ** opens in body

Inheritance: same type of module, inherit contents

Opening: resource modules, just use its contents

Both cases enjoy separate compilation (to .gfo files).

Parallel inheritance in concrete

concrete FoodsIta of Comments = open ResIta in {...}

concrete FoodsIta of Foods = CommentsIta ** open ResIta in {...}

concrete FoodsIta of Foods = CommentsIta ** open ResIta in {...}

concrete ShoppingIta of Shopping = FoodsIta, ClothesIta ;

Visualising module dependencies

How to produce dependency graphs

> i -retain Shopping.gf

> dependency_graph

-- wrote graph in file _gfdepgraph.dot

> ! dot -Tpng _gfdepgraph.dot >diamond.png

Multiple inheritance

Inheritance of several modules, as in

abstract Shopping = Foods, Clothes ;

Diamond property: what happens when the same constant is inher-

ited twice from an underlying module, via two extensions of it?

No problem in GF, since the intermediate modules may not change the

inherited constant.

Restricted inheritance

abstract SmallShopping =

Foods - [Wine], -- all except Wine

Clothes [Kind,Quality,Shirt,Elegant] ; -- only these

Redefining a constant

Possible only after restricted inheritance - but blocks later multiple

inheritance.

abstract Comments = ...

abstract Foods = Comments ** {...}

abstract Clothes = Comments - [Very] ** {fun Very ...}

abstract Shopping = Foods, Clothes ; -- ERROR!

Rule: the same constant can be inherited twice only if it comes from

the same source.

Information hiding

Mimicking ”private” and ”public”

resource Auxiliary = {oper aux ...}

resource Library = open Auxiliary in {oper foo = aux ...}

concrete Application of A = open Library in {

lin f = foo ... ; -- CORRECT

lin g = aux ... -- INCORRECT

}

Qualified names

Problem: a constant appears in two opened modules.

Solution: use qualified name

concrete C of A = open Prelude, Morpho in {

lin c = Morpho.init (Prelude.init x)

}

One can also qualify all names in opening,

concrete C of A = open (P = Prelude), Morpho in {

lin c = init (P.init x)

}

Algebraic datatypes for parameters

Parameter constructors with arguments (like datatypes in Haskell and
ML).

Create parameter hierarchies.

Example: German determiners have genders only in the singular. Don’t
write

param Gender = Masc | Fem | Neutr

param Case = Nom | Acc | Dat | Gen

lincat Det = Number => Gender => Case => Str

but (getting 3*4+4=16 distinct values instead of 2*3*4=24)

param DetForm = DSg Gender Case | DPl Case

lincat Det = DetForm => Str

German definite article

oper artDef : DetForm => Str = table {

DSg Masc Acc | DPl Dat => "den" ;

DSg (Masc | Neutr) Dat => "dem" ;

DSg (Masc | Neutr) Gen => "des" ;

DSg Neutr _ => "das" ;

DSg Fem (Nom | Acc) | DPl (Nom | Acc) => "die" ;

_ => "der"

}

form Sg Masc Sg Fem Sg Neutr Pl
Nom der die das die
Acc den die das die
Dat dem der dem den
Gen des der des der

Syncretism

Different parameters produce the same value, e.g. (SgFem Nom) and

(Pl Nom) in German articles.

Not always clear to tell from parameter hierarchies, e.g. German Acc

only matters in SgMasc.

Abstraction via parameter types

The definition

lincat N = {s : Number => Case => Str}

leaks the information that nouns have two variable features.

param NForm = NF Number Case ;

lincat N = {s : NForm => Str}

gives more robust code.

For instance

lin Mod adj noun = {s = \\f => adj.s ++ noun.s ! f}

now works independently of whether nouns have a case.

Parameter records

An alternative to NForm

lincat N = {s : {n : Number ; c : Case} => Str}

Cf. feature structures in unification grammars.

Pattern matching with partial patterns (for nouns like fish):

oper invarPluralN :

Str -> {s : {n : Number ; c : Case} => Str} = \s -> {

s = table {

{c = Gen} => s + "’s" ;

_ => s

}

}

Record extension and subtyping

Two-place verbs as verbs with a complement case (in German):

lincat V2 = V ** {c : Case} ;

lin Follow = regV "folgen" ** {c = Dative} ;

Now V2 becomes a subtype of V: V2 has all fields of V.

Tuples and product types

Product types and tuples are syntactic sugar for record types and

records:

T1 * ... * Tn ≡≡ {p1 : T1 ; ... ; pn : Tn}

<t1, ..., tn> ≡≡ {p1 = T1 ; ... ; pn = Tn}

The labels p1, p2,... are hard-coded.

Partial patterns - logically but slightly surprisingly,

case <g,n,p> of {

<Fem> => t

...

}

Prefix-dependent choices and pattern macros

Problem: English indefinite article is

• an if the next token begins with a vowel

• a otherwise

Solution: prefix-dependent choice expression:

indefArt : Str =

pre {

"a" | "e" | "i" | "o" | "u" => "an" ;

_ => "a"

} ;

Not really a solution in English

pre {

"eu" => "a" ; -- a euphemism

"uni" => "a" ; -- a university

"un" => "an" ; -- an uncle

"u" => "a" ; -- a user

"a" | "e" | "i" | "o" => "an" ;

_ => "a"

}

Problem: the article depends on pronunciation.

Pattern macros

oper vowel : pattern Str = #("a" | "e" | "i" | "o" | "u")

indefArt : Str =

pre {

#vowel => "an" ;

_ => "a"

}

Strings at compile time vs. run time

Summary of tokens:

• quoted string: "foo"

• gluing : t + s

• predefined operations: init, tail, tk, dp

• pattern matching over strings: "y" => "ies"

• prefix-dependent choices: pre {...}

Principle: all tokens must be known at compile time.

Corollary: above operations may not be applied to run-time variables.

Example

Using the + operator ”to eliminate the space”:

lin Question p = {s = p + "?"} ; -- INCORRECT!

Solution: use the lexer lextext

OR: use the Prelude operation

glue : Str -> Str -> Str

= \x,y -> x ++ "&+" ++ y

which uses a special token &+ that lexers and unlexers may handle.

Chapter 5: Using the resource
grammar library

Outline

• the coverage of the Resource Grammar Library

• the structure and presentation of the library

• lexical vs. phrasal categories

• the resource grammar API (Application Programmer’s Interface)

• reimplementing the Foods grammar and porting it to new languages

• interfaces, instances, and functors

• the division of labour between resource and application grammars

• functor overriding and compile-time transfer

• resource grammars as a linguistic ontology

• a tour of the resource grammar library

• browsing the library

The purpose of the library

The main grammar rules of different languages:

• the low-level details of morphology and syntax
• define grammatically correct language (not: semantically, prag-

matically, stylistically...)

For application grammarians,

grammar checking becomes type checking

that is, whatever is type-correct in the resource grammar is also gram-
matically correct.

Required of application grammarians: just practical knowledge of the
target language.

The library languages

Summer 2011: 20 languages complete API

Afrikaans Bulgarian Catalan Danish
Dutch English Finnish French
German Italian Nepalese Norwegian
Persian Polish Punjabi Romanian
Russian Spanish Swedish Urdu

Complete inflection (and some syntax): Amharic, Arabic, Latin, Turk-

ish

See also: http://grammaticalframework.org/lib/doc/status.html

http://grammaticalframework.org/lib/doc/status.html

Lexical vs. phrasal rules

Linguistically:

• lexical: to define words and their properties

– lexical categories

– lexical rules

• phrasal (combinatorial, syntactic): phrases of arbitrary size

– phrasal categories

– phrasal rules

Formally: lexical = zero-place abstract syntax functions

Lexical across languages

What is one word in one language can be zero or more in another

• English that, Swedish den där, French ce-là

• English the, Swedish inflection form, Finnish nothing

Lexical in the library

For each language L

• SyntaxL with phrasal rules - shared API

• ParadigmsL with morphological paradigms - distinct API’s

Closed vs. open lexical categories

Closed (structural words, function words) - given in Syntax

Det ; -- determiner e.g. "this"

AdA ; -- adadjective e.g. "very"

Open (content words) - constructed with Paradigms

N ; -- noun e.g. "cheese"

A ; -- adjective e.g. "warm"

Phrasal categories and rules

Five phrasal categories needed in the Foods grammar:

Utt ; -- utterance e.g. "this pizza is warm"

Cl ; -- clause e.g. "this pizza is warm"

NP ; -- noun phrase e.g. "this warm pizza"

CN ; -- common noun e.g. "warm pizza"

AP ; -- adjectival phrase e.g. "very warm"

Syntactic combinations

The syntactic combinations we need are the following:

mkUtt : Cl -> Utt ; -- e.g. "this pizza is warm"

mkCl : NP -> AP -> Cl ; -- e.g. "this pizza is warm"

mkNP : Det -> CN -> NP ; -- e.g. "this pizza"

mkCN : AP -> CN -> CN ; -- e.g. "warm pizza"

mkAP : AdA -> AP -> AP ; -- e.g. "very warm"

Lexical insertion rules

Form phrases from single words:

mkCN : N -> CN ;

mkAP : A -> AP ;

Naming convention

Opers producing C have name mkC, e.g. mkNP

Not always possible (why?)

Words: word C, e.g. wine N

Other things: descriptionC, e.g. presentTense

Example

these very warm pizzas are Italian

Resource grammar expression:

mkUtt

(mkCl

(mkNP these_Det

(mkCN (mkAP very_AdA (mkAP warm_A)) (mkCN pizza_N)))

(mkAP italian_A))

Application grammar syntax

Pred (These (Mod (Very Warm) Pizza)) Italian

The resource API: categories

Category Explanation Example
Utt utterance (sentence, question,...) who are you
Cl clause, with all tenses she looks at this
AP adjectival phrase very warm
CN common noun (without determiner) red house
NP noun phrase (subject or object) the red house
AdA adjective-modifying adverb, very
Det determiner this
A one-place adjective warm
N common noun house

The resource API: combination rules

Function Type Example
mkUtt Cl -> Utt John is very old
mkCl NP -> AP -> Cl John is very old
mkNP Det -> CN -> NP this old man
mkCN N -> CN house
mkCN AP -> CN -> CN very big blue house
mkAP A -> AP old
mkAP AdA -> AP -> AP very very old

The resource API: structural rules

Function Type In English
this Det Det this
that Det Det that
these Det Det this
those Det Det that
very AdA AdA very

The resource API: lexical paradigms

English:

Function Type
mkN (dog : Str) -> N

mkN (man,men : Str) -> N

mkA (cold : Str) -> A

Italian:

Function Type
mkN (vino : Str) -> N

mkA (caro : Str) -> A

German:

Function Type
Gender Type

masculine Gender

feminine Gender

neuter Gender

mkN (Stufe : Str) -> N

mkN (Bild,Bilder : Str) -> Gender -> N

mkA (klein : Str) -> A

mkA (gut,besser,beste : Str) -> A

Finnish:

Function Type
mkN (talo : Str) -> N

mkA (hieno : Str) -> A

The library path

The compiled libraries will be in some directory, such as /usr/local/lib/gf

in Unix-like environments.

GF uses the environment variable GF LIB PATH to locate this library. To

see if it is set, try

$ echo $GF_LIB_PATH

If the variable is not set, do

$ export GF_LIB_PATH=/usr/local/lib/gf

in Bash, maybe setenv in another shell.

Even better: put this in your .bashrc.

Two versions of libraries

In two directories of GF LIB PATH

• alltenses, containing all tense forms

• present, containing only the present tense forms, infinitives, and

participles.

The same modules, but in two versions, e.g. alltenses/SyntaxEng.gfo

and present/SyntaxEng.gfo.

Produced from the same source.

Testing the library

If you have GF LIB PATH set correctly,

> import -retain present/ParadigmsGer.gfo

> compute_concrete -table mkN "Farbe"

The path flag

List of directories to search GF source and object files

--# -path=.:present

Either in the source file or the import command.

> import -path=.:present FoodsREng.gf

English and Italian Foods with the resource

See the next two slides as an animation!

concrete FoodsEng of Foods = open SyntaxEng, ParadigmsEng in {
lincat
Comment = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;

lin
Pred item quality = mkUtt (mkCl item quality) ;
This kind = mkNP this_Quant kind ;
That kind = mkNP that_Quant kind ;
These kind = mkNP this_Quant plNum kind ;
Those kind = mkNP that_Quant plNum kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN (mkN "wine") ;
Pizza = mkCN (mkN "pizza") ;
Cheese = mkCN (mkN "cheese") ;
Fish = mkCN (mkN "fish" "fish") ;
Fresh = mkAP (mkA "fresh") ;
Warm = mkAP (mkA "warm") ;
Italian = mkAP (mkA "Italian") ;
Expensive = mkAP (mkA "expensive") ;
Delicious = mkAP (mkA "delicious") ;
Boring = mkAP (mkA "boring") ;

}

concrete FoodsIta of Foods = open SyntaxIta, ParadigmsIta in {
lincat
Comment = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;

lin
Pred item quality = mkUtt (mkCl item quality) ;
This kind = mkNP this_Quant kind ;
That kind = mkNP that_Quant kind ;
These kind = mkNP this_Quant plNum kind ;
Those kind = mkNP that_Quant plNum kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN (mkN "vino") ;
Pizza = mkCN (mkN "pizza") ;
Cheese = mkCN (mkN "formaggio") ;
Fish = mkCN (mkN "pesce") ;
Fresh = mkAP (mkA "fresco") ;
Warm = mkAP (mkA "caldo") ;
Italian = mkAP (mkA "italiano") ;
Expensive = mkAP (mkA "caro") ;
Delicious = mkAP (mkA "delizioso") ;
Boring = mkAP (mkA "noioso") ;

}

Now everyone can do it!

Exercise. Write a concrete syntax of Foods for some other language

included in the resource library. You can compare the results with the

hand-written grammars presented earlier in this tutorial.

Functor implementation of multilingual grammars

As shown in the animation, a new language is added easily:

1. copy the concrete syntax of an already given language

2. change the words (strings and inflection paradigms)

But how to avoid this copy and paste?

Answer: write a functor: a function that produces a module.

Functor = parametrized module

Instance and interface

Interface: declarations of oper’s

interface LexFoods = open Syntax in {

oper

wine_N : N ;

pizza_N : N ;

-- etc

}

Instance: definitions of oper’s

instance LexFoodsEng of LexFoods = open SyntaxEng, ParadigmsEng in {

oper

wine_N = mkN "wine" ;

pizza_N = mkN "pizza" ;

-- etc

}

The Foods functor

incomplete concrete FoodsI of Foods = open Syntax, LexFoods in {
lincat
Comment = Utt ; Item = NP ; Kind = CN ; Quality = AP ;

lin
Pred item quality = mkUtt (mkCl item quality) ;
This kind = mkNP this_Det kind ;
That kind = mkNP that_Det kind ;
These kind = mkNP these_Det kind ;
Those kind = mkNP those_Det kind ;
Mod quality kind = mkCN quality kind ;
Very quality = mkAP very_AdA quality ;
Wine = mkCN wine_N ;
Pizza = mkCN pizza_N ;
Cheese = mkCN cheese_N ;
Fish = mkCN fish_N ;
Fresh = mkAP fresh_A ;
Warm = mkAP warm_A ;
Italian = mkAP italian_A ;
Expensive = mkAP expensive_A ;
Delicious = mkAP delicious_A ;
Boring = mkAP boring_A ;

}

The Syntax interface and instances

Given in the resource grammar library:

interface Syntax

instance SyntaxEng of Syntax

instance SyntaxIta of Syntax

...

Functor instantiations

concrete FoodsEng of Foods = FoodsI with

(Syntax = SyntaxEng),

(LexFoods = LexFoodsEng)

concrete FoodsIta of Foods = FoodsI with

(Syntax = SyntaxIta),

(LexFoods = LexFoodsIta)

All you need to add a new language

instance LexFoodsGer of LexFoods = open SyntaxGer, ParadigmsGer in {
oper
wine_N = mkN "Wein" ;
pizza_N = mkN "Pizza" "Pizzen" feminine ;
cheese_N = mkN "Käse" "Käsen" masculine ;
fish_N = mkN "Fisch" ;
fresh_A = mkA "frisch" ;
warm_A = mkA "warm" "wärmer" "wärmste" ;
italian_A = mkA "italienisch" ;
expensive_A = mkA "teuer" ;
delicious_A = mkA "köstlich" ;
boring_A = mkA "langweilig" ;

}

concrete FoodsGer of Foods = FoodsI with
(Syntax = SyntaxGer),
(LexFoods = LexFoodsGer)

A design pattern for multilingual grammars

When does a functor work

A functor using the resource Syntax interface works when the concepts

are expressed by using the same structures in all languages.

When they don’t, their linearizations can be expressed by parameters

in the domain lexicon interface.

Problem: when new languages are added, more things may have to be

moved to the interface.

Overriding a functor

We can use restricted inheritance.

Contrived example:

concrete FoodsEng of Foods = FoodsI - [Pizza] with

(Syntax = SyntaxEng),

(LexFoods = LexFoodsEng) **

open SyntaxEng, ParadigmsEng in {

lin Pizza = mkCN (mkA "Italian") (mkN "pie") ;

}

Transfer in translation

Translation by transfer: change the syntactic structure.

John likes Mary -> Maria piace a Giovanni (Italian)

mkCl x like_V2 y -> mkCl y piacere_V2 x

What is your name? -> Wie heißt du? (German)

mkQCl what_IP (mkNP you_Pron name_N) -> mkQCl how_IAdv (mkCl you_Pron heissen_V)

How old are you? -> Quanti anni hai? (Italian)

mkQCl (how_IAdA old_A) you_Pron -> mkQCl (how_many_IDet year_N) have_V2 you_Pron

Compile-time transfer

The system can still be built with interlingua, the application abtract
syntax.

Only the way the resource grammar is used varies

fun Like : Person -> Item -> Comment

lin Like x y = mkCl x like_V2 y

lin Like x y = mkCl y piacere_V2 x

Three ways:

• no functor, separate concrete syntaxes (more copy and paste)
• functor with this rule as a parameter (can be unstable)
• functor with an exception (usually the most practical solution)

The resource grammar as a linguistic ontology

Domain: linguistic objects - nouns, verbs, predication, modification...

Cf. grammar books:

• chapters on nouns, verbs, sentence formation...

• sections on gender, cases, agreement...

The chapters become the resource grammar abstract syntax.

The sections become the concrete syntax.

Advantages of common linguistic ontology

Foreign language learners are helped by familiar conceots.

Resource grammar implementation can exploit previous work.

• abstract syntax gives a ”check list”

• concrete syntax code may be reusable via opening, inheritance,

functors

Application grammar writing gets easy

• learn the library for one language, learn it for all

• maybe use functors

Language typology gets precise concepts to talk about the similarities

and differences of languages.

A tour of the resource API

Go through the resource API in

http://www.grammaticalframework.org/lib/doc/synopsis.html

http://www.grammaticalframework.org/lib/doc/synopsis.html

Flattening of constructions

Core resource: minimal set of rules, maximally general.

This creates deep resource grammar trees.

Predication in core resource

mkCl : NP -> VP -> Cl

mkVP : VPSlash -> NP -> VP

mkVPSlash : V2 -> VPSlash

V2-predication in the API

mkCl : NP -> V2 -> NP -> Cl

mkCl x v y = mkCl x (mkVP (mkVPSlash v) y)

Tense and polarity

A clause is a sentence with variable tense and polarity

mkS : (Temp) -> (Pol) -> Cl -> S

Default sentence: present tense, positive polarity

mkS : Cl -> S

N.B. Parentheses in API documentation are used for optionality of

arguments

• implemented by overloading

• not significant for GF compiler

Full tense and polarity inflection

Form English Italian
Sim Pres Pos I sleep dormo
Sim Pres Neg I don’t sleep non dormo
Sim Past Pos I slept dormivo
Sim Past Neg I didn’t sleep non dormivo
Sim Fut Pos I will sleep dormirò
Sim Fut Neg I won’t sleep non dormirò
Sim Cond Pos I would sleep dormirei
Sim Cond Neg I wouldn’t sleep non dormirei
Ant Pres Pos I have slept ho dormito
Ant Pres Neg I haven’t slept non ho dormito
Ant Past Pos I had slept avevo dormito
Ant Past Neg I hadn’t slept non avevo dormito
Ant Fut Pos I will have slept avrò dormito
Ant Fut Neg I won’t have slept non avrò dormito
Ant Cond Pos I would have slept avrei dormito
Ant Cond Neg I wouldn’t have slept non avrei dormito

Trying out tenses

LangL.gf: the resource grammar as concrete syntax (rather than re-

source)

> import alltenses/LangEng.gfo

> parse -cat=Cl "I sleep" | linearize -table

Browsing the library

The core concrete syntax

Lang> p "this wine is good"

PhrUtt NoPConj (UttS (UseCl (TTAnt TPres ASimul) PPos

(PredVP (DetCN (DetQuant this_Quant NumSg) (UseN wine_N))

(UseComp (CompAP (PositA good_A)))))) NoVoc

The derived resource module

> i -retain alltenses/TryEng.gfo

> cc -all mkUtt (mkCl this_NP (mkA "cool"))

this is cool

Learn to use the resource library

Exercise. Construct some expressions and their translations by parsing

and linearizing in the resource library:

• is this wine good

• I (don’t) like this wine, do you like this wine

• I want wine, I would like to have wine

• I know that this wine is bad

• can you give me wine

• give me some wine

• two apples and wine

• he says that this wine is good

• she asked which wine was the best

Exercise. + Extend the Foods grammar with new forms of expressions,

corresponding to the examples of the previous exercise. First extend

the abstract syntax, then implement it by using the resource grammar

and a functor. You can also try to minimize the size of the abstract

syntax by using free variation as explained in Section ??. For instance,

I would like to have X, give me X, can you give me X, and X can be

variant expressions for one and the same order.

Your own resource grammar application project

Exercise. + Design a small grammar that can be used for controlling
an MP3 player. The grammar should be able to recognize commands
such as play this song, with the following variations:

• objects: song, artist
• modifiers: this, the next, the previous
• verbs with complements: play, remove
• verbs without complements: stop, pause

The implementation goes in the following phases:

1. abstract syntax
2. functor and lexicon interface
3. lexicon instance for the first language
4. functor instantiation for the first language
5. lexicon instance for the second language
6. functor instantiation for the second language
7. ...

Chapter 6: Semantic actions
and conditions in abstract syn-
tax

Outline

• GF as a logical framework

• dependent types

• selection restrictions

• polymorphism

• proof objects and proof-carrying documents

• variable binding and higher-order abstract syntax

• semantic definitions

Type theory

These concepts are inherited from type theory (more precisely: con-

structive type theory, or Martin-Löf type theory).

Type theory is the basis logical frameworks.

GF = logical framework + concrete syntax.

Dependent types

Dependent type = type depending on an object of another type.

Example: all natural numbers, numbers up to n

cat

Nat ;

Nats Nat ;

Example usage: guarantee that m - n is well formed (i.e. m >= n)

fun minus : (m : Nat) -> (n : Nats m) -> Nat

Dependent function type: (x : A) -> B x i.e. value type depends

on argument type.

Another example

Vectors of n elements; index within bounds; append:

cat

Vector Nat ;

fun

index : (n : Nat) -> Vector n -> Nats n -> Nat ;

append : (m,n : Nat) -> Vector m -> Vector n -> Vector (plus m n) ;

Yet another example

Well-formed postal addresses

cat

Address ;

Country ;

City Country ;

Street (x : Country) (City x) ;

fun

MkAddress : (x : Country) -> (y : City x) -> Street x y -> Address ;

Notice progressive context: (x : Country) (City x) where variable

must be bound (cf. argument list of function type).

Dependent types in grammar

Problem: to express conditions of semantic well-formedness.

Example: a voice command system for a ”smart house” wants to

eliminate meaningless commands.

Thus we want to restrict particular actions to particular devices - we

can dim a light, but we cannot dim a fan.

The following example is borrowed from the Regulus Book (Rayner &

al. 2006).

A simple example is a ”smart house” system, which defines voice com-

mands for household appliances.

A dependent type system

Ontology:

• there are commands and device kinds
• for each kind of device, there are devices and actions
• a command concerns an action of some kind on a device of the

same kind

Abstract syntax formalizing this:

cat

Command ;

Kind ;

Device Kind ; -- argument type Kind

Action Kind ;

fun

CAction : (k : Kind) -> Action k -> Device k -> Command ;

Device and Action are both dependent types.

Examples of devices and actions

Assume the kinds light and fan,

light, fan : Kind ;

dim : Action light ;

Given a kind, k, you can form the device the k.

DKindOne : (k : Kind) -> Device k ; -- the light

Now we can form the syntax tree

CAction light dim (DKindOne light)

but we cannot form the trees

CAction light dim (DKindOne fan)

CAction fan dim (DKindOne light)

CAction fan dim (DKindOne fan)

Linearization and parsing with dependent types

Concrete syntax does not know if a category is a dependent type.

lincat Action = {s : Str} ;

lin CAction _ act dev = {s = act.s ++ dev.s} ;

Notice that the Kind argument is suppressed in linearization.

Parsing with dependent types is performed in two phases:

1. context-free parsing

2. filtering through type checker

Parsing with suppression

By just doing the first phase, the kind argument is not found:

> parse "dim the light"

CAction ? dim (DKindOne light)

Moreover, type-incorrect commands are not rejected:

> parse "dim the fan"

CAction ? dim (DKindOne fan)

The term ? is a metavariable, returned by the parser for any subtree

that is suppressed by a linearization rule.

(NB in GF 3.2, the parser actually tries to solve the metavariables.)

Solving metavariables

GF parser tries to solve the metavariables:

> parse "dim the light"

CAction light dim (DKindOne light)

The type checking process may fail, in which case an error message is

shown and no tree is returned:

> parse "dim the fan"

Error in tree UCommand (CAction ? 0 dim (DKindOne fan)) :

(? 0 <> fan) (? 0 <> light)

Polymorphism

Sometimes an action can be performed on all kinds of devices.

This is represented as a function that takes a Kind as an argument and

produce an Action for that Kind:

fun switchOn, switchOff : (k : Kind) -> Action k ;

Functions of this kind are called polymorphic.

Polymorphism in concrete syntax

We can use this kind of polymorphism in concrete syntax oper’s as

well, to express Haskell-type library functions:

oper const :(a,b : Type) -> a -> b -> a =

,,c,_ -> c ;

oper flip : (a,b,c : Type) -> (a -> b ->c) -> b -> a -> c =

,,_,f,x,y -> f y x ;

Proof objects

Curry-Howard isomorphism = propositions as types principle: a

proposition is a type of proofs (= proof objects).

Example: define the less than proposition for natural numbers,

cat Nat ;

fun Zero : Nat ;

fun Succ : Nat -> Nat ;

Define inductively what it means for a number x to be less than a

number y :

• Zero is less than Succ y for any y.

• If x is less than y, then Succ x is less than Succ y.

The axioms in type theory

Expressing these axioms in type theory with a dependent type Less x

y and two functions constructing its objects:

cat Less Nat Nat ;

fun lessZ : (y : Nat) -> Less Zero (Succ y) ;

fun lessS : (x,y : Nat) -> Less x y -> Less (Succ x) (Succ y) ;

Example: the fact that 2 is less that 4 has the proof object

lessS (Succ Zero) (Succ (Succ (Succ Zero)))

(lessS Zero (Succ (Succ Zero)) (lessZ (Succ Zero)))

: Less (Succ (Succ Zero)) (Succ (Succ (Succ (Succ Zero))))

Proof-carrying documents

Idea: to be semantically well-formed, the abstract syntax of a docu-

ment must contain a proof of some property, although the proof is not

shown in the concrete document.

Example: documents describing flight connections:

To fly from Gothenburg to Prague, first take LH3043 to Frankfurt,

then OK0537 to Prague.

The well-formedness of this text is partly expressible by dependent

typing:

cat

City ;

Flight City City ;

fun

Gothenburg, Frankfurt, Prague : City ;

LH3043 : Flight Gothenburg Frankfurt ;

OK0537 : Flight Frankfurt Prague ;

Proving that the connection is possible

To extend the conditions to flight connections, we introduce a category

of proofs that a change is possible:

cat IsPossible (x,y,z : City)(Flight x y)(Flight y z) ;

A legal connection is formed by the function

fun Connect : (x,y,z : City) ->

(u : Flight x y) -> (v : Flight y z) ->

IsPossible x y z u v -> Flight x z ;

Restricted polymorphism

Above, all Actions were either of

• monomorphic: defined for one Kind

• polymorphic: defined for all Kinds

To make this scale up for new Kinds, we can refine this to restricted

polymorphism: defined for Kinds of a certain class

The notion of class uses the Curry-Howard isomorphism as follows:

• a class is a predicate of Kinds — i.e. a type depending of Kinds

• a Kind is in a class if there is a proof object of this type

Example: classes for switching and dimming

We modify the smart house grammar:

cat

Switchable Kind ;

Dimmable Kind ;

fun

switchable_light : Switchable light ;

switchable_fan : Switchable fan ;

dimmable_light : Dimmable light ;

switchOn : (k : Kind) -> Switchable k -> Action k ;

dim : (k : Kind) -> Dimmable k -> Action k ;

Classes for new actions can be added incrementally.

Variable bindings

Mathematical notation and programming languages have expressions
that bind variables.

Example: universal quantifier formula

(All x)B(x)

The variable x has a binding (All x), and occurs bound in the body
B(x).

Examples from informal mathematical language:

for all x, x is equal to x

the function that for any numbers x and y returns the maximum of x+y

and x*y

Let x be a natural number. Assume that x is even. Then x + 3 is odd.

Higher-order abstract syntax

Abstract syntax can use functions as arguments:

cat Ind ; Prop ;

fun All : (Ind -> Prop) -> Prop

where Ind is the type of individuals and Prop, the type of propositions.

Let us add an equality predicate

fun Eq : Ind -> Ind -> Prop

Now we can form the tree

All (\x -> Eq x x)

which we want to relate to the ordinary notation

(All x)(x = x)

In higher-order abstract syntax (HOAS), all variable bindings are

expressed using higher-order syntactic constructors.

Higher-order abstract syntax: linearization

HOAS has proved to be useful in the semantics and computer imple-

mentation of variable-binding expressions.

How do we relate HOAS to the concrete syntax?

In GF, we write

fun All : (Ind -> Prop) -> Prop

lin All B = {s = "(" ++ "All" ++ B.$0 ++ ")" ++ B.s}

General rule: if an argument type of a fun function is a function type

A -> C, the linearization type of this argument is the linearization type

of C together with a new field $0 : Str.

The argument B thus has the linearization type

{s : Str ; $0 : Str},

If there are more bindings, we add $1, $2, etc.

Eta expansion

To make sense of linearization, syntax trees must be eta-expanded:

for any function of type

A -> B

an eta-expanded syntax tree has the form

\x -> b

where b : B under the assumption x : A.

Linearization needs eta expansion

Given the linearization rule

lin Eq a b = {s = "(" ++ a.s ++ "=" ++ b.s ++ ")"}

the linearization of the tree

\x -> Eq x x

is the record

{$0 = "x", s = "(x = x)"}

Then we can compute the linearization of the formula,

All (\x -> Eq x x) --> {s = "(All x) (x = x)"}.

The linearization of the variable x is, ”automagically”, the string "x".

Parsing variable bindings

GF can treat any one-word string as a variable symbol.

> p -cat=Prop "(All x) (x = x)"

All (\x -> Eq x x)

Variables must be bound if they are used:

> p -cat=Prop "(All x) (x = y)"

no tree found

Semantic definitions

The fun judgements of GF are declarations of functions, giving their

types.

Can we compute fun functions?

Mostly we are not interested, since functions are seen as constructors,

i.e. data forms - as usual with

fun Zero : Nat ;

fun Succ : Nat -> Nat ;

But it is also possible to give semantic definitions to functions. The

key word is def:

fun one : Nat ;

def one = Succ Zero ;

fun twice : Nat -> Nat ;

def twice x = plus x x ;

fun plus : Nat -> Nat -> Nat ;

def

plus x Zero = x ;

plus x (Succ y) = Succ (Sum x y) ;

Computing a tree

Computation: follow a chain of definition until no definition can be

applied,

plus one one -->

plus (Succ Zero) (Succ Zero) -->

Succ (plus (Succ Zero) Zero) -->

Succ (Succ Zero)

Computation in GF is performed with the put term command and the

compute transformation, e.g.

> parse -tr "1 + 1" | put_term -compute -tr | l

plus one one

Succ (Succ Zero)

s(s(0))

Definitional equality

Two trees are definitionally equal if they compute into the same tree.

Definitional equality does not guarantee sameness of linearization:

plus one one ===> 1 + 1

Succ (Succ Zero) ===> s(s(0))

The main use of this concept is in type checking: sameness of types.

Thus e.g. the following types are equal

Less Zero one

Less Zero (Succ Zero))

so that an object of one also is an object of the other.

Judgement forms for constructors

The judgement form data tells that a function is a data constructor:

data

Zero : Nat ;

Succ : Nat -> Nat ;

Notice: in def definitions, identifier patterns not marked as data will

be treated as variables.

Hence data must be used instead of fun, to make patterns in def

definitions work correctly.

Exercises on semantic definitions

1. Implement an interpreter of a small functional programming lan-

guage with natural numbers, lists, pairs, lambdas, etc. Use higher-

order abstract syntax with semantic definitions. As concrete syntax,

use your favourite programming language.

2. There is no termination checking for def definitions. Construct an

example that makes type checking loop.

Chapter 7: Embedded gram-
mars and code generation

Outline

• PGF, a portable format for multilingual GF grammars

• host-language API’s for PGF

• manipulation of abstract syntax trees in the host language

• stand-alone translation programs

• question-answering systems

• multilingual syntax editors

• web services

• mobile phone applications

• language models for speech recognition

Functionalities of an embedded grammar format

GF grammars can be used as parts of programs written in other pro-

gramming languages, to be called host languages.

This facility is based on several components:

• PGF: a portable format for multilingual GF grammars

• a PGF interpreter written in the host language

• a library in the host language that enables calling the interpreter

• a way to manipulate abstract syntax trees in the host language

The portable grammar format

The portable format is called PGF, ”Portable Grammar Format”.

This format is produced by using GF as batch compiler, with the option
-make, from the operative system shell:

% gf -make SOURCE.gf

PGF is the recommended format in which final grammar products are
distributed

• stripped from superfluous information
• can be started and faster than sets of separate modules

Application programmers have never any need to read or modify PGF
files.

PGF thus plays the same role as machine code in general-purpose
programming (or bytecode in Java).

Haskell: the EmbedAPI module

The Haskell API contains (among other things) the following types
and functions:

readPGF :: FilePath -> IO PGF

linearize :: PGF -> Language -> Tree -> String

parse :: PGF -> Language -> Category -> String -> [Tree]

linearizeAll :: PGF -> Tree -> [String]

linearizeAllLang :: PGF -> Tree -> [(Language,String)]

parseAll :: PGF -> Category -> String -> [[Tree]]

parseAllLang :: PGF -> Category -> String -> [(Language,[Tree])]

languages :: PGF -> [Language]

categories :: PGF -> [Category]

startCat :: PGF -> Category

First application: a translator

Let us first build a stand-alone translator, which can translate in any

multilingual grammar between any languages in the grammar.

module Main where

import PGF

import System (getArgs)

main :: IO ()

main = do

file:_ <- getArgs

gr <- readPGF file

interact (translate gr)

translate :: PGF -> String -> String

translate gr s = case parseAllLang gr (startCat gr) s of

(lg,t:_):_ -> unlines [linearize gr l t | l <- languages gr, l /= lg]

_ -> "NO PARSE"

To run the translator, first compile it by

% ghc -make -o trans Translator.hs

For this, you need the Haskell compiler GHC.

http://www.haskell.org/ghc

Producing PGF for the translator

Then produce a PGF file. For instance, the Food grammar set can be
compiled as follows:

% gf -make FoodEng.gf FoodIta.gf

This produces the file Food.pgf (its name comes from the abstract
syntax).

The Haskell library function interact makes the trans program work like
a Unix filter, which reads from standard input and writes to standard
output. Therefore it can be a part of a pipe and read and write files.
The simplest way to translate is to echo input to the program:

% echo "this wine is delicious" | ./trans Food.pgf

questo vino è delizioso

The result is given in all languages except the input language.

A translator loop

To avoid starting the translator over and over again: change interact

in the main function to loop, defined as follows:

loop :: (String -> String) -> IO ()

loop trans = do

s <- getLine

if s == "quit" then putStrLn "bye" else do

putStrLn $ trans s

loop trans

The loop keeps on translating line by line until the input line is quit.

A question-answer system

The next application is also a translator, but it adds a transfer com-
ponent - a function that transforms syntax trees.

The transfer function we use is one that computes a question into an
answer.

The program accepts simple questions about arithmetic and answers
”yes” or ”no” in the language in which the question was made:

Is 123 prime?

No.

77 est impair ?

Oui.

We change the pure translator by giving the translate function the
transfer as an extra argument:

translate :: (Tree -> Tree) -> PGF -> String -> String

Ordinary translation as a special case where transfer is the identity

function (id in Haskell).

To reply in the same language as the question:

translate tr gr = case parseAllLang gr (startCat gr) s of

(lg,t:_):_ -> linearize gr lg (tr t)

_ -> "NO PARSE"

Abstract syntax of the query system

Input: abstract syntax judgements

abstract Query = {

flags startcat=Question ;

cat

Answer ; Question ; Object ;

fun

Even : Object -> Question ;

Odd : Object -> Question ;

Prime : Object -> Question ;

Number : Int -> Object ;

Yes : Answer ;

No : Answer ;

}

Exporting GF datatypes to Haskell

To make it easy to define a transfer function, we export the abstract

syntax to a system of Haskell datatypes:

% gf --output-format=haskell Query.pgf

It is also possible to produce the Haskell file together with PGF, by

% gf -make --output-format=haskell QueryEng.gf

The result is a file named Query.hs, containing a module named Query.

Output: Haskell definitions

module Query where

import PGF

data GAnswer =

GYes

| GNo

data GObject = GNumber GInt

data GQuestion =

GPrime GObject

| GOdd GObject

| GEven GObject

newtype GInt = GInt Integer

All type and constructor names are prefixed with a G to prevent clashes.

The Haskell module name is the same as the abstract syntax name.

The question-answer function

Haskell’s type checker guarantees that the functions are well-typed also

with respect to GF.

answer :: GQuestion -> GAnswer

answer p = case p of

GOdd x -> test odd x

GEven x -> test even x

GPrime x -> test prime x

value :: GObject -> Int

value e = case e of

GNumber (GInt i) -> fromInteger i

test :: (Int -> Bool) -> GObject -> GAnswer

test f x = if f (value x) then GYes else GNo

Converting between Haskell and GF trees

The generated Haskell module also contains

class Gf a where

gf :: a -> Tree

fg :: Tree -> a

instance Gf GQuestion where

gf (GEven x1) = DTr [] (AC (CId "Even")) [gf x1]

gf (GOdd x1) = DTr [] (AC (CId "Odd")) [gf x1]

gf (GPrime x1) = DTr [] (AC (CId "Prime")) [gf x1]

fg t =

case t of

DTr [] (AC (CId "Even")) [x1] -> GEven (fg x1)

DTr [] (AC (CId "Odd")) [x1] -> GOdd (fg x1)

DTr [] (AC (CId "Prime")) [x1] -> GPrime (fg x1)

_ -> error ("no Question " ++ show t)

For the programmer, it is enougo to know:

• all GF names are in Haskell prefixed with G

• gf translates from Haskell objects to GF trees

• fg translates from GF trees to Haskell objects

Putting it all together: the transfer definition

module TransferDef where

import PGF (Tree)

import Query -- generated from GF

transfer :: Tree -> Tree

transfer = gf . answer . fg

answer :: GQuestion -> GAnswer

answer p = case p of

GOdd x -> test odd x

GEven x -> test even x

GPrime x -> test prime x

value :: GObject -> Int

value e = case e of

GNumber (GInt i) -> fromInteger i

test :: (Int -> Bool) -> GObject -> GAnswer

test f x = if f (value x) then GYes else GNo

prime :: Int -> Bool

prime x = elem x primes where

primes = sieve [2 .. x]

sieve (p:xs) = p : sieve [n | n <- xs, n ‘mod‘ p > 0]

sieve [] = []

Putting it all together: the Main module

Here is the complete code in the Haskell file TransferLoop.hs.

module Main where

import PGF

import TransferDef (transfer)

main :: IO ()

main = do

gr <- readPGF "Query.pgf"

loop (translate transfer gr)

loop :: (String -> String) -> IO ()

loop trans = do

s <- getLine

if s == "quit" then putStrLn "bye" else do

putStrLn $ trans s

loop trans

translate :: (Tree -> Tree) -> PGF -> String -> String

translate tr gr s = case parseAllLang gr (startCat gr) s of

(lg,t:_):_ -> linearize gr lg (tr t)

_ -> "NO PARSE"

Putting it all together: the Makefile

To automate the production of the system, we write a Makefile as

follows:

all:

gf -make --output-format=haskell QueryEng

ghc --make -o ./math TransferLoop.hs

strip math

(The empty segments starting the command lines in a Makefile must

be tabs.) Now we can compile the whole system by just typing

make

Then you can run it by typing

./math

Just to summarize, the source of the application consists of the fol-

lowing files:

Makefile -- a makefile

Math.gf -- abstract syntax

Math???.gf -- concrete syntaxes

TransferDef.hs -- definition of question-to-answer function

TransferLoop.hs -- Haskell Main module

Web server applications

PGF files can be used in web servers, for which there is a Haskell library.

How to launch a server is explained in

http://www.grammaticalframework.org/doc/gf-quickstart.html

http://www.grammaticalframework.org/doc/gf-quickstart.html

JavaScript applications

JavaScript is a programming language that has interpreters built in in

most web browsers. It is therefore usable for client side web programs,

which can even be run without access to the internet. The following

figure shows a JavaScript program compiled from GF grammars as run

on an iPhone.

Compiling to JavaScript

JavaScript is one of the output formats of the GF batch compiler.

Thus the following command generates a JavaScript file from two

Food grammars.

% gf -make --output-format=js FoodEng.gf FoodIta.gf

The name of the generated file is Food.js, derived from the top-most

abstract syntax name. This file contains the multilingual grammar as

a JavaScript object.

Language models for speech recognition

The standard way of using GF in speech recognition is by building

grammar-based language models.

GF supports several formats, including GSL, the formatused in the

Nuance speech recognizer.

GSL is produced from GF by running gf with the flag --output-format=gsl.

file:www.nuance.com

GSL generated from “FoodsEng.gf“

% gf -make --output-format=gsl FoodsEng.gf

% more FoodsEng.gsl

;GSL2.0

; Nuance speech recognition grammar for FoodsEng

; Generated by GF

.MAIN Phrase_cat

Item_1 [("that" Kind_1) ("this" Kind_1)]

Item_2 [("these" Kind_2) ("those" Kind_2)]

Item_cat [Item_1 Item_2]

Kind_1 ["cheese" "fish" "pizza" (Quality_1 Kind_1)

"wine"]

Kind_2 ["cheeses" "fish" "pizzas"

(Quality_1 Kind_2) "wines"]

Kind_cat [Kind_1 Kind_2]

Phrase_1 [(Item_1 "is" Quality_1)

(Item_2 "are" Quality_1)]

Phrase_cat Phrase_1

Quality_1 ["boring" "delicious" "expensive"

"fresh" "italian" ("very" Quality_1) "warm"]

Quality_cat Quality_1

More speech recognition grammar formats

Other formats available via the --output-format flag include:

Format Description
gsl Nuance GSL speech recognition grammar
jsgf Java Speech Grammar Format (JSGF)
jsgf sisr old JSGF with semantic tags in SISR WD 20030401 format
srgs abnf SRGS ABNF format
srgs xml SRGS XML format
srgs xml prob SRGS XML format, with weights
slf finite automaton in the HTK SLF format
slf sub finite automaton with sub-automata in HTK SLF

All currently available formats can be seen with help print grammar.

Chapter 8: Interfacing formal
and natural languages

Outline

• arithmetic expressions and precedences

• code generation as linearization

• strict vs. liberal abstract syntax

• natural language generation from logic

• logical semantics of natural language

• graftals: grammars for fractals

Arithmetic expressions

We construct a calculator with addition, subtraction, multiplication,

and division of integers.

abstract Calculator = {

cat Exp ;

fun

EPlus, EMinus, ETimes, EDiv : Exp -> Exp -> Exp ;

EInt : Int -> Exp ;

}

The category Int is a built-in category of integers. Its syntax trees

integer literals, i.e. sequences of digits:

5457455814608954681 : Int

These are the only objects of type Int: grammars are not allowed to

declare functions with Int as value type.

Concrete syntax: a simple approach

We begin with a concrete syntax that always uses parentheses around

binary operator applications:

concrete CalculatorP of Calculator = {

lincat

Exp = SS ;

lin

EPlus = infix "+" ;

EMinus = infix "-" ;

ETimes = infix "*" ;

EDiv = infix "/" ;

EInt i = i ;

oper

infix : Str -> SS -> SS -> SS = \f,x,y ->

ss ("(" ++ x.s ++ f ++ y.s ++ ")") ;

}

Now we have

> linearize EPlus (EInt 2) (ETimes (EInt 3) (EInt 4))

(2 + (3 * 4))

First problems:

• to get rid of superfluous spaces and

• to recognize integer literals in the parser

Precedence and fixity

Arithmetic expressions should be unambiguous. If we write

2 + 3 * 4

it should be parsed as one, but not both, of

EPlus (EInt 2) (ETimes (EInt 3) (EInt 4))

ETimes (EPlus (EInt 2) (EInt 3)) (EInt 4)

We choose the former tree, because multiplication has higher prece-

dence than addition.

To express the latter tree, we have to use parentheses:

(2 + 3) * 4

The usual precedence rules

• Integer constants and expressions in parentheses have the highest

precedence.

• Multiplication and division have equal precedence, lower than the

highest but higher than addition and subtraction, which are again

equal.

• All the four binary operations are left-associative: 1 + 2 + 3 means

the same as (1 + 2) + 3.

Precedence as a parameter

Precedence can be made into an inherent feature of expressions:

oper

Prec : PType = Ints 2 ;

TermPrec : Type = {s : Str ; p : Prec} ;

mkPrec : Prec -> Str -> TermPrec = \p,s -> {s = s ; p = p} ;

lincat

Exp = TermPrec ;

Notice Ints 2: a parameter type, whose values are the integers 0,1,2.

Using precedence levels

Compare the inherent precedence of an expression with the expected
precedence.

• if the inherent precedence is lower than the expected precedence,
use parentheses
• otherwise, no parentheses are needed

This idea is encoded in the operation

oper usePrec : TermPrec -> Prec -> Str = \x,p ->

case lessPrec x.p p of {

True => "(" x.s ")" ;

False => x.s

} ;

(We use lessPrec from lib/prelude/Formal.)

Fixities

We can define left-associative infix expressions:

infixl : Prec -> Str -> (_,_ : TermPrec) -> TermPrec = \p,f,x,y ->

mkPrec p (usePrec x p ++ f ++ usePrec y (nextPrec p)) ;

Constant-like expressions (the highest level):

constant : Str -> TermPrec = mkPrec 2 ;

All these operations can be found in lib/prelude/Formal, which has 5

levels.

Calculator compactly

concrete CalculatorC of Calculator = open Formal, Prelude in {

flags lexer = codelit ; unlexer = code ; startcat = Exp ;

lincat Exp = TermPrec ;

lin

EPlus = infixl 0 "+" ;

EMinus = infixl 0 "-" ;

ETimes = infixl 1 "*" ;

EDiv = infixl 1 "/" ;

EInt i = constant i.s ;

}

Code generation as linearization

Translate arithmetic (infix) to JVM (postfix):

2 + 3 * 4

===>

iconst 2 : iconst 3 ; iconst 4 ; imul ; iadd

Just give linearization rules for JVM:

lin

EPlus = postfix "iadd" ;

EMinus = postfix "isub" ;

ETimes = postfix "imul" ;

EDiv = postfix "idiv" ;

EInt i = ss ("iconst" ++ i.s) ;

oper

postfix : Str -> SS -> SS -> SS = \op,x,y ->

ss (x.s ++ ";" ++ y.s ++ ";" ++ op) ;

Programs with variables

A straight code programming language, with initializations and as-

signments:

int x = 2 + 3 ;

int y = x + 1 ;

x = x + 9 * y ;

We define programs by the following constructors:

fun

PEmpty : Prog ;

PInit : Exp -> (Var -> Prog) -> Prog ;

PAss : Var -> Exp -> Prog -> Prog ;

PInit uses higher-order abstract syntax for making the initialized vari-
able available in the continuation of the program.

Example

Program code

int x = 2 + 3 ;

int y = x + 1 ;

x = x + 9 * y ;

Abstract syntax tree

PInit (EPlus (EInt 2) (EInt 3)) (\x ->

PInit (EPlus (EVar x) (EInt 1)) (\y ->

PAss x (EPlus (EVar x) (ETimes (EInt 9) (EVar y)))

PEmpty))

Binding checked by HOAS

No uninitialized variables are allowed - there are no constructors for

Var! But we do have the rule

fun EVar : Var -> Exp ;

The rest of the grammar is just the same as for arithmetic expressions

#Rsecprecedence. The best way to implement it is perhaps by writing

a module that extends the expression module. The most natural start

category of the extension is Prog.

Exercises on code generation

1. Define a C-like concrete syntax of the straight-code language.

2. Extend the straight-code language to expressions of type float.

To guarantee type safety, you can define a category Typ of types, and

make Exp and Var dependent on Typ. Basic floating point expressions

can be formed from literal of the built-in GF type Float. The arithmetic

operations should be made polymorphic (as #Rsecpolymorphic).

3. Extend JVM generation to the straight-code language, using two

more instructions

• iload x, which loads the value of the variable x

• istore x which stores a value to the variable x

Thus the code for the example in the previous section is

iconst 2 ; iconst 3 ; iadd ; istore x ;

iload x ; iconst 1 ; iadd ; istore y ;

iload x ; iconst 9 ; iload y ; imul ; iadd ; istore x ;

4. If you made the exercise of adding floating point numbers to the

language, you can now cash out the main advantage of type checking

for code generation: selecting type-correct JVM instructions. The

floating point instructions are precisely the same as the integer one,

except that the prefix is f instead of i, and that fconst takes floating

point literals as arguments.

Generating graphics via graftals

Abstract syntax

-- (c) Krasimir Angelov 2009

abstract Graftal = {

cat N; S;

fun z : N ;

s : N -> N ;

c : N -> S ;

}

Concrete syntax: Sierpinski in PostScript

concrete Sierpinski of Graftal = {

lincat N = {a : Str; b : Str} ;

lincat S = {s : Str} ;

lin z = {a = A; b = B} ;

lin s x = {

a = x.b ++ R ++ x.a ++ R ++ x.b ;

b = x.a ++ L ++ x.b ++ L ++ x.a

} ;

lin c x = {s = "newpath 300 550 moveto" ++ x.a ++ "stroke showpage"} ;

oper A : Str = "0 2 rlineto" ;

oper B : Str = "0 2 rlineto" ;

oper L : Str = "+60 rotate" ;

oper R : Str = "-60 rotate" ;

}

An example as Sierpinski

c (s (s (s (s (s (s (s (s (s (s z))))))))))

An example as Dragon

Chapter 9: Getting started with
resource grammar programming

Contents

The key categories and rules

Morphology-syntax interface

Examples and variations in English, Italian, French, Finnish, Swedish,

German, Hindi

A miniature resource grammar: Italian

Module extension and dependency graphs

Ergativity in Hindi/Urdu

Don’t worry if the details of this lecture feel difficult! Syntax is difficult

and this is why resource grammars are so useful!

Syntax in the resource grammar

”Linguistic ontology”: syntactic structures common to languages

80 categories, 200 functions, which have worked for all resource lan-

guages so far

Sufficient for most purposes of expressing meaning: mathematics,

technical documents, dialogue systems

Must be extended by language-specific rules to permit parsing of arbi-

trary text (ca. 10% more in English?)

A lot of work, easy to get wrong!

The key categories and functions

The key categories

cat name example
Cl clause every young man loves Mary
VP verb phrase loves Mary
V2 two-place verb loves
NP noun phrase every young man
CN common noun young man
Det determiner every
AP adjectival phrase young

The key functions

fun name example
PredVP : NP -> VP -> Cl predication every man loves Mary
ComplV2 : V2 -> NP -> VP complementation loves Mary
DetCN : Det -> CN -> NP determination every man
AdjCN : AP -> CN -> CN modification young man

Feature design

cat variable inherent
Cl tense -
VP tense, agr -
V2 tense, agr case
NP case agr
CN number, case gender
Det gender, case number
AP gender, number, case -

agr = agreement features: gender, number, person

Predication: building clauses

Interplay between features

param Tense, Case, Agr

lincat Cl = {s : Tense => Str }

lincat NP = {s : Case => Str ; a : Agr}

lincat VP = {s : Tense => Agr => Str }

fun PredVP : NP -> VP -> Cl

lin PredVP np vp = {s = \\t => np.s ! subj ++ vp.s ! t ! np.a}

oper subj : Case

Feature passing

In general, combination rules just pass features: no case analysis (table

expressions) is performed.

A special notation is hence useful:

\\p,q => t === table {p => table {q => t}}

It is similar to lambda abstraction (\x,y -> t in a function type).

Predication: examples

English

np.agr present past future
Sg Per1 I sleep I slept I will sleep
Sg Per3 she sleeps she slept she will sleep
Pl Per1 we sleep we slept we will sleep

Italian (”I am tired”, ”she is tired”, ”we are tired”)

np.agr present past future
Masc Sg Per1 io sono stanco io ero stanco io sarò stanco
Fem Sg Per3 lei è stanca lei era stanca lei sarà stanca
Fem Pl Per1 noi siamo stanche noi eravamo stanche noi saremo stanche

Predication: variations

Word order:

• will I sleep (English), è stanca lei (Italian)

Pro-drop:

• io sono stanco vs. sono stanco (Italian)

Ergativity:

• ergative case of transitive verb subject; agreement to object (Hindi)

Variable subject case:

• minä olen lapsi vs. minulla on lapsi (Finnish, ”I am a child” (nom-
inative) vs. ”I have a child” (adessive))

Complementation: building verb phrases

Interplay between features

lincat NP = {s : Case => Str ; a : Agr }

lincat VP = {s : Tense => Agr => Str }

lincat V2 = {s : Tense => Agr => Str ; c : Case}

fun ComplV2 : V2 -> NP -> VP

lin ComplV2 v2 vp = {s = \\t,a => v2.s ! t ! a ++ np.s ! v2.c}

Complementation: examples

English

v2.case infinitive VP
Acc love me
at + Acc look at me

Finnish

v2.case VP, infinitive translation
Accusative tavata minut ”meet me”
Partitive rakastaa minua ”love me”
Elative pitää minusta ”like me”
Genitive + perään katsoa minun perääni ”look after me”

Complementation: variations

Prepositions: a two-place verb usually involves a preposition in addi-

tion case

lincat V2 = {s : Tense => Agr => Str ; c : Case ; prep : Str}

lin ComplV2 v2 vp = {s = \\t,a => v2.s ! t ! a ++ v2.prep ++ np.s ! v2.c}

Clitics: the place of the subject can vary, as in Italian:

• Maria ama Giovanni vs. Maria mi ama (”Mary loves John” vs.

”Mary loves me”)

Determination: building noun phrases

Interplay between features

lincat NP = {s : Case => Str ; a : Agr }

lincat CN = {s : Number => Case => Str ; g : Gender}

lincat Det = {s : Gender => Case => Str ; n : Number}

fun DetCN : Det -> CN -> NP

lin DetCN det cn = {

s = \\c => det.s ! cn.g ! c ++ cn.s ! det.n ! c ;

a = agr cn.g det.n Per3

}

oper agr : Gender -> Number -> Person -> Agr

Determination: examples

English

Det.num NP
Sg every house
Pl these houses

Italian (”this wine”, ”this pizza”, ”those pizzas”)

Det.num CN.gen NP
Sg Masc questo vino
Sg Fem questa pizza
Pl Fem quelle pizze

Finnish (”every house”, ”these houses”)

Det.num NP, nominative NP, inessive
Sg jokainen talo jokaisessa talossa
Pl nämä talot näissä taloissa

Determination: variations

Systamatic number variation:

• this-these, the-the, il-i (Italian ”the-the”)

”Zero” determiners:

• talo (”a house”) vs. talo (”the house”) (Finnish)

• a house vs. houses (English), une maison vs. des maisons (French)

Specificity parameter of nouns:

• varje hus vs. det huset (Swedish, ”every house” vs. ”that house”)

Modification: adding adjectives to nouns

Interplay between features

lincat AP = {s : Gender => Number => Case => Str }

lincat CN = {s : Number => Case => Str ; g : Gender}

fun AdjCN : AP -> CN -> CN

lin AdjCN ap cn = {

s = \\n,c => ap.s ! cn.g ! n ! c ++ cn.s ! n ! c ;

g = cn.g

}

Modification: examples

English

CN, singular CN, plural
new house new houses

Italian (”red wine”, ”red house”)

CN.gen CN, singular CN, plural
Masc vino rosso vini rossi
Fem casa rossa case rosse

Finnish (”red house”)

CN, sg, nominative CN, sg, ablative CN, pl, essive
punainen talo punaiselta talolta punaisina taloina

Modification: variations

The place of the adjectival phrase

• Italian: casa rossa, vecchia casa (”red house”, ”old house”)

• English: old house, house similar to this

Specificity parameter of the adjective

• German: ein rotes Haus vs. das rote Haus (”a red house” vs. ”the

red house”)

Lexical insertion

To ”get started” with each category, use words from lexicon.

There are lexical insertion functions for each lexical category:

UseN : N -> CN

UseA : A -> AP

UseV : V -> VP

The linearization rules are often trivial, because the lincats match

lin UseN n = n

lin UseA a = a

lin UseV v = v

However, for UseV in particular, this will usually be more complex.

The head of a phrase

The inserted word is the head of the phrases built from it:

• house is the head of house, big house, big old house etc

As a rule with many exceptions and modifications,

• variable features are passed from the phrase to the head

• inherent features of the head are inherited by the noun

This works for endocentric phrases: the head has the same type as

the full phrase.

What is the head of a noun phrase?

In an NP of form Det CN, is Det or CN the head?

Neither, really, because features are passed in both directions:

lin DetCN det cn = {

s = \\c => det.s ! cn.g ! c ++ cn.s ! det.n ! c ;

a = agr cn.g det.n Per3

}

Moreover, this NP is exocentric: no part is of the same type as the

whole.

Structural words

Structural words = function words, words with special grammatical

functions

• determiners: the, this, every

• pronouns: I, she

• conjunctions: and, or, but

Often members of closed classes, which means that new words are

never (or seldom) introduces to them.

Linearization types are often specific and inflection are irregular.

A miniature resource grammar for Italian

We divide it to five modules - much fewer than the full resource!

abstract Grammar -- syntactic cats and funs

abstract Lang = Grammar **... -- test lexicon added to Grammar

resource ResIta -- resource for Italian

concrete GrammarIta of Grammar = open ResIta in... -- Italian syntax

concrete LangIta of Lang = GrammarIta ** open ResIta in... -- It. lexicon

Module dependencies

rectangle = abstract, solid ellipse = concrete, dashed ellipse = resource

The module Grammar

abstract Grammar = {
cat
Cl ; NP ; VP ; AP ; CN ; Det ; N ; A ; V ; V2 ;

fun
PredVP : NP -> VP -> Cl ;
ComplV2 : V2 -> NP -> VP ;
DetCN : Det -> CN -> NP ;
ModCN : CN -> AP -> CN ;

UseV : V -> VP ;
UseN : N -> CN ;
UseA : A -> AP ;

a_Det, the_Det : Det ; this_Det, these_Det : Det ;
i_NP, she_NP, we_NP : NP ;

}

Parameters

Parameters are defined in ResIta.gf. Just 11 of the 56 verb forms.

Number = Sg | Pl ;

Gender = Masc | Fem ;

Case = Nom | Acc | Dat ;

Aux = Avere | Essere ; -- the auxiliary verb of a verb

Tense = Pres | Perf ;

Person = Per1 | Per2 | Per3 ;

Agr = Ag Gender Number Person ;

VForm = VInf | VPres Number Person | VPart Gender Number ;

Italian verb phrases

Tense and agreement of a verb phrase, in syntax

UseV arrive V Pres Perf
Ag Masc Sg Per1 arrivo sono arrivato
Ag Fem Sg Per1 arrivo sono arrivata
Ag Masc Sg Per2 arrivi sei arrivato
Ag Fem Sg Per2 arrivi sei arrivata
Ag Masc Sg Per3 arriva è arrivato
Ag Fem Sg Per3 arriva è arrivata
Ag Masc Pl Per1 arriviamo siamo arrivati
Ag Fem Pl Per1 arriviamo siamo arrivate
Ag Masc Pl Per2 arrivate siete arrivati
Ag Fem Pl Per2 arrivate siete arrivate
Ag Masc Pl Per3 arrivano sono arrivati
Ag Fem Pl Per3 arrivano sono arrivate

The forms of a verb, in morphology

arrive V form
VInf arrivare
VPres Sg Per1 arrivo
VPres Sg Per2 arrivi
VPres Sg Per3 arriva
VPres Pl Per1 arriviamo
VPres Pl Per2 arrivate
VPres Pl Per3 arrivano
VPart Masc Sg arrivato
VPart Fem Sg arrivata
VPart Masc Pl arrivati
VPart Fem Pl arrivate

Inherent feature: aux is essere.

The verb phrase type

Lexical insertion maps V to VP.

Two possibilities for VP: either close to Cl,

lincat VP = {s : Tense => Agr => Str}

or close to V, just adding a clitic and an object to verb,

lincat VP = {v : Verb ; clit : Str ; obj : Str} ;

We choose the latter. It is more efficient in parsing.

Verb phrase formation

Lexical insertion is trivial.

lin UseV v = {v = v ; clit, obj = []}

Complementation assumes NP has a clitic and an ordinary object part.

lin ComplV2 =

let

nps = np.s ! v2.c

in {

v = {s = v2.s ; aux = v2.aux} ;

clit = nps.clit ;

obj = nps.obj

}

Italian noun phrases

Being clitic depends on case

lincat NP = {s : Case => {clit,obj : Str} ; a : Agr} ;

Examples:

lin she_NP = {
s = table {
Nom => {clit = [] ; obj = "lei"} ;
Acc => {clit = "la" ; obj = []} ;
Dat => {clit = "le" ; obj = []}
} ;

a = Ag Fem Sg Per3
}

lin John_NP = {
s = table {
Nom | Acc => {clit = [] ; obj = "Giovanni"} ;
Dat => {clit = [] ; obj = "a Giovanni"}
} ;

a = Ag Fem Sg Per3
}

Noun phrases: alternatively

Use a feature instead of separate fields,

lincat NP = {s : Case => {s : Str ; isClit : Bool} ; a : Agr} ;

The use of separate fields is more efficient and scales up better to

multiple clitic positions.

Determination

No surprises

lincat Det = {s : Gender => Case => Str ; n : Number} ;

lin DetCN det cn = {

s = \\c => {obj = det.s ! cn.g ! c ++ cn.s ! det.n ; clit = []} ;

a = Ag cn.g det.n Per3

} ;

Building determiners

Often from adjectives:

lin this_Det = adjDet (mkA "questo") Sg ;

lin these_Det = adjDet (mkA "questo") Pl ;

oper prepCase : Case -> Str = \c -> case c of {

Dat => "a" ;

_ => []

} ;

oper adjDet : Adj -> Number -> Determiner = \adj,n -> {

s = \\g,c => prepCase c ++ adj.s ! g ! n ;

n = n

} ;

Articles: see GrammarIta.gf

Adjectival modification

Recall the inherent feature for position

lincat AP = {s : Gender => Number => Str ; isPre : Bool} ;

lin ModCN cn ap = {

s = \\n => preOrPost ap.isPre (ap.s ! cn.g ! n) (cn.s ! n) ;

g = cn.g

} ;

Obviously, separate pre- and post- parts could be used instead.

Italian morphology

Complex but mostly great fun:

regNoun : Str -> Noun = \vino -> case vino of {

fuo + c@("c"|"g") + "o" => mkNoun vino (fuo + c + "hi") Masc ;

ol + "io" => mkNoun vino (ol + "i") Masc ;

vin + "o" => mkNoun vino (vin + "i") Masc ;

cas + "a" => mkNoun vino (cas + "e") Fem ;

pan + "e" => mkNoun vino (pan + "i") Masc ;

_ => mkNoun vino vino Masc

} ;

See ResIta for more details.

Predication, at last

Place the object and the clitic, and select the verb form.

lin PredVP np vp =

let

subj = (np.s ! Nom).obj ;

obj = vp.obj ;

clit = vp.clit ;

verb = table {

Pres => agrV vp.v np.a ;

Perf => agrV (auxVerb vp.v.aux) np.a ++ agrPart vp.v np.a

}

in {

s = \\t => subj ++ clit ++ verb ! t ++ obj

} ;

Selection of verb form

We need it for the present tense

oper agrV : Verb -> Agr -> Str = \v,a -> case a of {

Ag _ n p => v.s ! VPres n p

} ;

The participle agrees to the subject, if the auxiliary is essere

oper agrPart : Verb -> Agr -> Str = \v,a -> case v.aux of {

Avere => v.s ! VPart Masc Sg ;

Essere => case a of {

Ag g n _ => v.s ! VPart g n

}

} ;

To do

Full details of the core resource grammar are in ResIta (150 loc) and

GrammarIta (80 loc).

One thing is not yet done correctly: agreement of participle to ac-

cusative clitic object: now it gives io la ho amato, and not io la ho

amata.

This is left as an exercise!

Ergativity in Hindi/Urdu

Normally, the subject is nominative and the verb agrees to the subject.

However, in the perfective tense:

• the subject of a transitive verb is in an ergative ”case” (particle

ne)

• the verb agrees to the object

Example: ”the boy/girl eats the apple/bread”

subj obj gen. present perfective
Masc Masc ladka: seb Ka:ta: hai ladke ne seb Ka:ya:
Masc Fem ladka: roTi: Ka:ta: hai ladke ne roTi: Ka:yi:
Fem Masc ladki: seb Ka:ti: hai ladki: ne seb Ka:ya:
Fem Fem ladki: roTi: Ka:ti: hai ladki: ne roTi: Ka:yi:

A Hindi clause in different tenses

Exercises

1. Learn the commands dependency graph, print grammar, system es-
cape !, and system pipe ?.

2. Write tables of examples of the key syntactic functions for your
target languages, trying to include all possible forms.

3. Implement Grammar and Lang for your target language.

4. Even if you don’t know Italian, you may try this: add a parameter
or something in GrammarIta to implement the rule that the participle
in the perfect tense agrees in gender and number with an accusative
clitic. Test this with the sentences lei la ha amata and lei ci ha amati
(where the current grammar now gives amato in both cases).

5. Learn some linguistics! My favourite book is Introduction to The-
oretical Linguistics by John Lyons (Cambridge 1968, at least 14 edi-
tions).

Chapter 10: Extending the Re-
source Grammar Library

Outline

Module structure

Statistics

How to start building a new language

How to test a resource grammar

The Assignment

The principal module structure

solid = API, dashed = internal, ellipse = abstract+concrete, rectangle = resource/instance,

diamond = interface, green = given, blue = mechanical, red = to do

Division of labour

Written by the resource grammarian:

• concrete of the row from Structural to Verb
• concrete of Cat and Lexicon
• Paradigms
• abstract and concrete of Extra, Irreg

Already given or derived mechanically:

• all abstract modules except Extra, Irreg
• concrete of Common, Grammar, Lang, All
• Constructors, Syntax, Try

Roles of modules: Library API

Syntax: syntactic combinations and structural words

Paradigms: morphological paradigms

Try: (almost) everything put together

Constructors: syntactic combinations only

Irreg: irregularly inflected words (mostly verbs)

Roles of modules: Top-level grammar

Lang: common syntax and lexicon

All: common grammar plus language-dependent extensions

Grammar: common syntax

Structural: lexicon of structural words

Lexicon: test lexicon of 300 content words

Cat: the common type system

Common: concrete syntax mostly common to languages

Roles of modules: phrase categories

module scope value categories
Adjective adjectives AP

Adverb adverbial phrases AdN, Adv

Conjunction coordination Adv, AP, NP, RS, S

Idiom idiomatic expressions Cl, QCl, VP, Utt

Noun noun phrases and nouns Card, CN, Det, NP, Num, Ord

Numeral cardinals and ordinals Digit, Numeral

Phrase suprasentential phrases PConj, Phr, Utt, Voc

Question questions and interrogatives IAdv, IComp, IDet, IP, QCl

Relative relat. clauses and pronouns RCl, RP

Sentence clauses and sentences Cl, Imp, QS, RS, S, SC, SSlash

Text many-phrase texts Text

Verb verb phrases Comp, VP, VPSlash

Type discipline and consistency

Producers: each phrase category module is the producer of value

categories listed on previous slide.

Consumers: all modules may use any categories as argument types.

Contract: the module Cat defines the type system common for both

consumers and producers.

Different grammarians may safely work on different producers.

This works even for mutual dependencies of categories:

Sentence.UseCl : Temp -> Pol -> Cl -> S -- S uses Cl

Sentence.PredVP : VP -> NP -> Cl -- uses VP

Verb.ComplVS : VS -> S -> VP -- uses S

Auxiliary modules

resource modules provided by the library:

• Prelude and Predef: string operations, booleans
• Coordination: generic formation of list conjunctions
• ParamX: commonly used parameter, such as Number = Sg | Pl

resource modules up to the grammarian to write:

• Res: language specific parameter types, morphology, VP formation
• Morpho, Phono,...: possible division of Res to more modules

Dependencies

Most phrase category modules:

concrete VerbGer of Verb = CatGer ** open ResGer, Prelude in ...

Conjunction:

concrete ConjunctionGer of Conjunction = CatGer **

open Coordination, ResGer, Prelude in ...

Lexicon:

concrete LexiconGer of Lexicon = CatGer **

open ParadigmsGer, IrregGer in {

Functional programming style

The Golden Rule: Whenever you find yourself programming by copy

and paste, write a function instead!

• Repetition inside one definition: use a let expression

• Repetition inside one module: define an oper in the same module

• Repetition in many modules: define an oper in the Res module

• Repetition of an entire module: write a functor

Functors in the Resource Grammar Library

Used in families of languages

• Romance: Catalan, French, Italian, Spanish
• Scandinavian: Danish, Norwegian, Swedish

Structure:

• Common, a common resource for the family
• Diff, a minimal interface extended by interface Res
• Cat and phrase structure modules are functors over Res
• Idiom, Structural, Lexicon, Paradigms are ordinary modules

Example: DiffRomance

Words and morphology are of course different, in ways we haven’t tried

to formalize.

In syntax, there are just eight parameters that fundamentally make the

difference:

Prepositions that fuse with the article (Fre, Spa de, a; Ita also con, da, in, su).

param Prepos ;

Which types of verbs exist, in terms of auxiliaries. (Fre, Ita avoir, être, and refl; Spa
only haber and refl).

param VType ;

Derivatively, if/when the participle agrees to the subject. (Fre elle est partie, Ita lei
è partita, Spa not)

oper partAgr : VType -> VPAgr ;

Whether participle agrees to foregoing clitic. (Fre je l’ai vue, Spa yo la he visto)

oper vpAgrClit : Agr -> VPAgr ;

Whether a preposition is repeated in conjunction (Fre la somme de 3 et de 4, Ita la
somma di 3 e 4).

oper conjunctCase : NPForm -> NPForm ;

How infinitives and clitics are placed relative to each other (Fre la voir, Ita vederla).
The Bool is used for indicating if there are any clitics.

oper clitInf : Bool -> Str -> Str -> Str ;

To render pronominal arguments as clitics and/or ordinary complements. Returns
True if there are any clitics.

oper pronArg : Number -> Person -> CAgr -> CAgr -> Str * Str * Bool ;

To render imperatives (with their clitics etc).

oper mkImperative : Bool -> Person -> VPC -> {s : Polarity => AAgr => Str} ;

Pros and cons of functors

+ intellectual satisfaction: linguistic generalizations

+ code can be shared: of syntax code, 75% in Romance and 85% in

Scandinavian

+ bug fixes and maintenance can often be shared as well

+ adding a new language of the same family can be very easy

- difficult to get started with proper abstractions

- new languages may require extensions of interfaces

Workflow: don’t start with a functor, but do one language normally,

and refactor it to an interface, functor, and instance.

Suggestions about functors for new languages

Romance: Portuguese probably using functor, Romanian probably in-

dependent

Germanic: Dutch maybe by functor from German, Icelandic probably

independent

Slavic: Bulgarian and Russian are not functors, maybe one for Western

Slavic (Czech, Slovak, Polish) and Southern Slavic (Bulgarian)

Fenno-Ugric: Estonian maybe by functor from Finnish

Indo-Aryan: Hindi and Urdu most certainly via a functor

Semitic: Arabic, Hebrew, Maltese probably independent

Effort statistics, completed languages

language syntax morpho lex total months started
common 413 - - 413 2 2001
abstract 729 - 468 1197 24 2001
Bulgarian 1200 2329 502 4031 3 2008
English 1025 772 506 2303 6 2001
Finnish 1471 1490 703 3664 6 2003
German 1337 604 492 2433 6 2002
Russian 1492 3668 534 5694 18 2002
Romance 1346 - - 1346 10 2003
Catalan 521 *9000 518 *10039 4 2006
French 468 1789 514 2771 6 2002
Italian 423 *7423 500 *8346 3 2003
Spanish 417 *6549 516 *7482 3 2004
Scandinavian 1293 - - 1293 4 2005
Danish 262 683 486 1431 2 2005
Norwegian 281 676 488 1445 2 2005
Swedish 280 717 491 1488 4 2001
total 12545 *36700 6718 *55963 103 2001

Lines of source code in April 2009, rough estimates of person months. * = generated
code.

How to start building a language, e.g. Marathi

1. Create a directory GF/lib/src/marathi

2. Check out the ISO 639-3 language code: Mar

3. Copy over the files from the closest related language, e.g. hindi

4. Rename files marathi/*Hin.gf to marathi/*Mar.gf

5. Change imports of Hin modules to imports of Mar modules

6. Comment out every line between header { and the final }

7. Now you can import your (empty) grammar: i marathi/LangMar.gf

Suggested order for proceeding with a language

1. ResMar: parameter types needed for nouns

2. CatMar: lincat N

3. ParadigmsMar: some regular noun paradigms

4. LexiconMar: some words that the new paradigms cover

5. (1.-4.) for V, maybe with just present tense

6. ResMar: parameter types needed for Cl, CN, Det, NP, Quant, VP

7. CatMar: lincat Cl, CN, Det, NP, Quant, VP

8. NounMar: lin DetCN, DetQuant

9. VerbMar: lin UseV

10. SentenceMar: lin PredVP

Character encoding for non-ASCII languages

GF internally: 32-bit unicode

Generated files (.gfo, .pgf): UTF-8

Source files: whatever you want, but use a flag if not isolatin-1.

UTF-8 and cp1251 (Cyrillic) are possible in strings, but not in identi-

fiers. The module must contain

flags coding = utf8 ; -- OR coding = cp1251

Transliterations are available for many alphabets (see help unicode table).

Using transliteration

This is what you have to add in GF/src/GF/Text/Transliterations.hs

transHebrew :: Transliteration

transHebrew = mkTransliteration allTrans allCodes where

allTrans = words $

"A b g d h w z H T y K k l M m N " ++

"n S O P p Z. Z q r s t - - - - - " ++

"w2 w3 y2 g1 g2"

allCodes = [0x05d0..0x05f4]

Also edit a couple of places in GF/src/GF/Command/Commands.hs.

You can later convert the file to UTF-8 (see help put string).

Diagnosis methods along the way

Make sure you have a compilable LangMar at all times!

Use the GF command pg -missing to check which functions are miss-

ing.

Use the GF command gr -cat=C | l -table to test category C

Regression testing with a treebank

Build and maintain a treebank: a set of trees with their linearizations:

1. Create a file test.trees with just trees, one by line.

2. Linearize each tree to all forms, possibly with English for comparison.

> i english/LangEng.gf
> i marathi/LangMar.gf
> rf -lines -tree -file=test.trees |

l -all -treebank | wf -file=test.treebank

3. Create a gold standard gold.treebank from test.treebank by manually correcting
the Marathi linearizations.

4. Compare with the Unix command diff test.treebank gold.treebank

5. Rerun (2.) and (4.) after every change in concrete syntax; extend the tree set
and the gold standard after every new implemented function.

Sources

A good grammar book

• lots of inflection paradigms
• reasonable chapter on syntax
• traditional terminology for grammatical concepts

A good dictionary

• inflection information about words
• verb subcategorization (i.e. case and preposition of complements)

Wikipedia article on the language

Google as ”gold standard”: is it rucola or ruccola?

Google translation for suggestions (can’t be trusted, though!)

Compiling the library

The current development library sources are in GF/lib/src.

Use make in this directory to compile the libraries.

Use runghc Make lang api langs=Mar to compile just the language Mar.

Assignment: a good start

1. Build a directory and a set of files for your target language.

2. Implement some categories, morphological paradigms, and syntax

rules.

3. Give the lin rules of at least 100 entries in Lexicon.

4. Send us: your source files and a treebank of 100 trees with lineariza-

tions in English and your target language. These linearizations should

be correct, and directly generated from your grammar implementation.

