Theory of GF and Parsing, Hints for Efficient
Grammars

Krasimir Angelov

Chalmers University of Technology

August 21, 2009

@ Introduction

Q>

Introduction

The GF language is:
@ domain specific - Grammars first of all

@ declarative - What vs How

The GF system is:
@ optimizing compiler and interpreter

@ not as smart as you

Although the language is declarative, the compiler needs some help
to produce efficient grammars

Parsing vs Linearization

There are two major operations that someone could do with a
grammar

@ Linearization
o Efficient - mapping from tree to string
e Parsing
o Search Problem - find the tree(s) that produce a given string

Speaking about the efficiency | mean efficient parsing and compact
grammar

Inside the Black Box

@ The GF language is too complex to be used directly for
efficient parsing

@ The compiler transforms it into simpler GF Core language

@ The efficiency of the grammar depends on the GF Core

@ Small Core = Efficient Grammar

GF = GF Core
GF Core = PMCFG

Parallel Multiple Context-Free Grammar (PMCFG)

e Well known grammar formalism (Seki at al., 1991)

@ Natural extension of CFG that produces tuples of strings
instead of simple strings

@ It is trivial to implement classical context-sensitive languages -
{a"b"c"|n > 0}:

funz =<"")"")"" >
sx =<"a" H x.pl,"b" H x.p2,"c" +H x.p3 >
cx =< x.pl H x.p2 H x.p3 >

Mildly Context-Sensitive Languages and GF

Joshi Aravind. 1991. Tree Adjoining Grammars: How much
context-sensitivity is required to provide reasonable structural
descriptions?

@ The language must be parsable in polynomial time.
@ The language must have constant growth.

@ The language should admit limited cross-serial dependencies.

Example language: {a"b"c"|n > 0} and all MCFG

More than Mildly Context-Sensitive Languages

The exponential language {a"|n > 0}:

funz =<"3a" >
sx =< x.pl H x.pl>

is not Mildly Context-Sensitive (reduplication).

Four non-MCS Natural Languages

@ Mandarin Chinese numeral names

Mandarin Chinese yes/no questions

Old Georgian case system

Lindenmayer system

Mandarin Chinese numeral names

@ Concatenation of ten thousands

wan 10 000
wan wan | vyi 100 000 000
wan i zhao | 1 000 000 000 000

@ Composite numbers

wu zhao zhao wu zhao
five trillion trillion five trillion

5 000 000 000 005 000 000 000 000

e Formally

{wu zhao®t wu zhao®® ... wu zhao* | k1 > ko > ...

> kn}

Mandarin Chinese yes/no questions

Zhangsan like play basketball not like play basketball
Zhangsan ai da langiu bu ai da langiu

Does Zhangsan like to play basketball?

Zhangsan like play basketball not like play volleyball
Zhangsan ai da lanqiu bu ai da paiqiu

Zhangsan likes to play basketball, not to play volleyball

Old Georgian case system

@ Example:
tkuenda micemul ars cnob-ad saidumlo-j
to you given is knowing-Adv ~ mistery-Nom
igi sasupevel-isa m-is ymrt-isa-jsa-j

Art=Nom kingdom-Gen Art-Gen god-Gen-Gen-Nom

Onto You it is given to know the mistery of the kingdom of God
Mark 4:11

@ Formal

Ni-Nom No-Gen-Nom N5-Gen®-Nom . .. Ny-Gen*1-Nom

Lindenmayer system

@ Mathematical objects
@ The structure of some plants

@ The growth of some cristals

A—a
@ Symmetry in music B—b

A — BRARB
B — ALBLA

The reduplication is a norm!

The current status of parsing with GF

Angelov. 2009. Incremental Parsing with PMCFG

Features:
e Very Efficient (polynomial - close to linear)
@ Supports PMCFG for free
e PMCFG allows more compact grammars

@ It is incremental !!!

Things to consider:
o the GF = GF Core conversion is often exponential

@ The grammar should be carefully written to avoid
combinatorial explosion

@ In practice careful means linguistically motivated

The Rules of The Game

INITIAL PRE]ZICT
S — f[B]
[95 — f[B];1: q]

PrEDICT . .
By — glCl [[A— f[Bl;/:ae(d:r)

[kBg — g[Clir: o]

S - start category, o = rhs(f, 1)

v = rhs(g, r)

ScAN .
[JA— f[B];/:aes]

- s=w
(1A~ F[B]: /- s e] o
COMPLETE
« .
A fIB]; 1 :
VA= LT 0oy jk)

N— f[B] [fAL;N]
COMBINE _
[J‘-’A—> fIBl;l:ae(d;r) f] [5Bd;r; N|

[“A — fIB{d :== N}];/:c (d;r) e 3]

Parsing with the reso

1200

1000

800

600

400

200

1T 3 5 7 9 1 13 15 17 19 21 23 25 27 20 AN

Note: Much faster with application grammars

33 3% 37 29

41

—+— LangBul
—=—LangCat
LangDan
—— LangEng
—+—LangFre
—— LangGer
—Langlna
Langhlor
LangSwe
LangSpa

it
.
it

Parsing of {a®"|n > 0} — O(nlog n)

0O — koW ke M -l 00 0
J

[
L]
[
/
/
) R & (ﬁ% §§? égF £§$F égﬁp éﬂyy Qﬁﬁg@
2

tokens

Introduction

9 GF Core
Optimizations

Debugging

Conclusion

Q>

GF Core Language

The parser uses language which is simplified version of GF.

The linearization types are flat tuples of strings:

lincat C = Str Str ... x Str;

The linearizations are simple concatenations:
linf xy=<x.pl,x.p2+4++ y.p3 >;

No operations are allowed

No variants are allowed

No parameters and tables

No pattern matching

No gluing is allowed (i.e. + but not +)

GF = GF Core

Operations elimination

Variants elimination

°

°

@ Parameter types elimination

@ Linearization rules transformations
°

Common subexpressions optimization

Operations elimination

The operations are NONRECURSIVE functions. They are
evaluated at compile time. (macroses)

GF GF Core
oper mkN noun = case noun of { lin apple_N = < "apple”, " apples” >;
_+"s" = < noun, noun+"es" >; plus_N = < "plus”, " pluses” >;

- = < noun, noun 4+ "s" >
I
lin apple_N = mkN " apple”;

plus_N = mkN " plus”;

Note: the pattern matching in mkN was eliminated

Hints for Operations

Since the operations are computed at compile time this doesn't
affect the runtime efficiency. However they affect the compilation
speed (slightly).

Variants elimination

The variants are just expanded:

GF

lin girlLN = mkN (variants {"tjej"; "flicka" });

GF Core

lin girl_.N; = mkN "tjej";
girl-N, = mkN " flicka";

Note: Appropriate for application specific grammars. Should be
avoided in resource grammars.

Variants are not always what you want

GF
lin Answer pol verb ="1" 4++pol ++verb;
eat = "eat”;
like =" like";
Pos = """

Neg = variants{"do not”;"don't" };

Comp sl s2 =s1 +";" ++ s2;

Comp (Answer Neg like) (Answer Neg eat)

| don't like; | don't eat

| don't like; | do not eat
| do not like; | don't eat
| do not like; | do not eat

Variants are not always what you want

GF

lin Answer pol verb = \\style = "I" +4 (pol!style) ++ verb;
eat = "eat”;
like = "like";
Pos = table{ Official = ""; Spoken = """ };
Neg = table{ Official = " do not”; Spoken = "don't" };

Comp idsl ids2 = variants{comp Official; comp Spoken};

oper comp style = sl1lstyle ++ ";" ++ s2!style;

Comp (Answer Neg like) (Answer Neg eat)

| don't like; | don't eat
| do not like; | do not eat

The variants could blow up

When many variants are used in parallel the number of core rules
grows exponentially.

GF

lin start_word = variants{" open”; "start” } 4+ variants{’ Word" ;" Microsoft Word" };
o

GF Core

lin start_.word; = "open” ++ "Word";
start_word, = "open” + " Microsoft Word";
start_words = "start” ++ "Word";
start_word, = "start” ++ " Microsoft Word";

Variants explosion with tables

GF

lin close_word = \\tense = close_V !tense ++ variants{" Word" ;" Microsoft Word" };

"o

oper close_V = table Tense {"close”;" closed” ;" have closed”;...};

Desugared GF

lin close_word = table Tense {
"close” ++ variants{"Word" ;" Microsoft Word" };
" closed” ++ variants{" Word" ;" Microsoft Word" };
" have closed” ++ variants{" Word"; " Microsoft Word" }

+

v

Note: Leads to 23 = 8 possible combinations although there is only
one variant in the original code

Variants explosion with tables - CORE

GF Core

lin close_word,

close_word>

close_word3

close_word,

<"close” ++ "Word";

"closed” ++ "Word";

"have closed” ++ "Word" >;
<"close” ++ " Microsoft Word" ;

"closed” ++ "Word";

"have closed” ++ "Word” >;
<"close” ++ "Word"”;

"closed” ++ " Microsoft Word";
"have closed” ++ "Word” >;
<"close” ++ " Microsoft Word" ;
"closed” 4+ " Microsoft Word" ;

"have closed” ++ "Word" >;

Variants explosion with tables - SOLUTION

GF

lin close_word = variants{closelt "Word"; closelt " Microsoft Word" };

oper closelt obj = \\tense = close_V!tense ++ oby;

",

close_V = table Tense {"close”;" closed” ;" have closed”;...};

Hints for Variants

Variants should be used with care

A variant in the wrong place could lead too many
combinations, which is often not what you want

@ A combinatorial explosion could kill the compiler with

Out of memory

Unnecessary combinations will slow down the parser

Hint: use the command 'l -all’

Parameter Types Elimination

lincat NP = {s: Case = Str; g : Gender;n: Number; p : Person}
param Case = Nom|Acc|Dat;

Gender = Masc|Fem|Neutr;

Number = Sg|PI,

Person = P1|P2|P3,;

Table Types Elimination

A value of type Case = Str looks like:
table {Nom = s1; Acc = sy; Dat = s3}
We could replace it with tuple:
< S1,S52,53 >
Then in general type like A = Str is equivalent to:

Str x Strx...x Str

n times

where n is the number of values in the parameter type A.

Parameter Fields Elimination

GF
lincat NP = {s:...;g: Gender;n: Number; p : Person}
GF Core
lincat NPy = Str * Str x Str; — Masc; Sg, P1
NPy = Str * Str x Str; — Masc; Sg, P2
NP3 = Str * Str x Str; — Masc; Sg, P3
NP4 = Str * Str x Str; — Masc; P, P1
NP1g = Str x Str * Str; — Neutr; Pl, P3

Note: The number of categories doesn’t immediately affect the
size of the compiled grammar

Counting Parametric Types

It is important to know how many possible values a given
parameter type has because:

@ This determines the number of fields in the core:
P = Str

@ This determines the number of categories in the core:

{...;p: P}

Counting the number of parameter values

Parameter Definition

param P = P; Q11 Q12... Qim,
| P2 Qo1 Q22... Qomy

|Pn in Qn2---Qnmn

Values Count

C(P) = C(@11) *C(Q12) ... C(Qim,)
+ C(Q21) * C(@22) ... C(Q2my,)

+ (é('in) * C(Qn2) - .- C(Qom,)

Counting Parametric Tables and Records

Parametric Records

CH{ar: Q1;q2:Q2...qn: Qn}) =C(Q1) xC(Q2) ...

Parametric Tables

C(P = Q) = C(Q)*)

Warning: Exponentials should be avoided!!!

Hints for Parameters

o Keep the lexicon compact:

lincat N = {s . NForm => Str; g . DGender};

param NForm
= NF Number Species Case

| NFPICount

param NForm
= NF Number Species
| NFSgDefNom
| NFPICount
| NFVocative

o Linguistically accurate e Mathematically elegant

o The irregularity is obvious o Linguistically overgenerating

Comment
The lexical items are inflection tables. Duplication means overhead

for every entry in the lexicon.

Hints for Parameters

o Keep the syntax elegant:

lincat CN = {s : Number = Species = Case = Str};

Comment

The syntactic rules are closed set. Compared to the lexicon this is
a small set so it is not so important to make them compact. It is
much more important to have clear easy to manipulate structure.

The efficiency of the parser is not affected by the number of fields
in the linearization types.

Hints for Parameters

@ Minimize the number of inherent parameters

lincat N = {s . NForm => Str; g . DGender};

param DGender oper DGender = {g : Gender; a: Animacy}
= DMasc Animacy param Gender
| DFem = Masc
| DNeutr | Fem
| Neutr;

param Animacy = Animate | Inanimate;

e Animacy matters only for Masc e Animacy given for all genders

Linearization Rules Transformation

GF
fun AdjCN : AP — CN — CN;
lin AdjCN ap cn = {
s = ap.slcn.g +H cn.s;
g =cn.g
}
GF Core
fun AdjCN; : AP — CN1 — CNjy; —Masc

lin AdjCN; ap cn = < ap.pl + cn.pl >

fun AdjCN, : AP — CN> — CNy; —Fem
lin AdjCN, ap cn = < ap.p2 + cn.pl >

fun AdjCN5 : AP — CN3 — CNs3; —Neutr
lin AdjCN3 ap cn = < ap.p3 +H- cn.pl >

Counting Linearization Rules

In general linearization rule like:
funf AL - A — ... > A, — A

produces C(f) rules in the core

C(f) = C(A1) * C(A2) *...xC(An)

Comment

The number of rules could be reduced by reducing the number of
parameters in the linearization types. The count is also reduced by
the optimizations in the compiler.

No pattern matching

Allowed
oper mkN noun = case noun of {
_+"s" = < noun, noun + "es" >;
- = < noun, noun+"s" >
Ji
Not Allowed
lin DetCN det cn = case det.s of {
=
= ...

}

Hint: use parameter which says whether the string is empty

No gluing

Allowed

lin DetCN det cn = case det.spec of {

Indefinite = case cn.g of {Utr = "en”; Neutr = "ett" } ++ cn.s

Not Allowed

lin DetCN det cn = case det.spec of {
Definite = cn.s + case cn.g of {Utr = "en”; Neutr = "et" };

}

Hint: for agglutinative languages (Turkish, Finnish, Estonian,
Hungarian, ...) use custom lexer

Agglutinatination

@ Some languages have pottentially infinite set of words:

Turkish:

anlamiyorum = anla(root) -mi(negation) -yor(continuous) -um(first person)
I don't understand

@ The grammar could be based on roots and suffixes instead of
on words:

vvanla” _’_'_ vv&+11 _’_'_ ” min _’_'_ 11&+11 _’_'_ nyorrv —f—i_ " &+rv _{_}_ " umn

@ The lexer/unlexer are responsible to produce the real words

© Optimizations

Optimizations

Three main optimizations reduce the exponential size of the
grammar:

@ Common Subexpressions Optimization
@ Common Functions Optimization

@ Coercion Rules

Note: the optimizations cannot be expressed in GF Core. PMCFG
is needed.

Common Subexpressions Optimization

GF Core

linuxy=<x.pl,x.p2+ y.pl>
vxy=<"a",x.p2 +H y.pl >

PMCFG

Fi:=
= (53,5) [v]

F»

51 =
S, =
S3 =

(51,%2) [4]

Common Subexpressions Optimization in the Lexicon

GF Core

lin good_A = < "dobar","dobra", " dobro", " dobre” >
beautiful A = < "hubav”,"hubava”, " hubavo”,” hubavo" >

v

PMCFG

F1 :=(51,52,53,54) [good_A]
F> :=(55,56,57,57) |[beautiful _A]

S1 :="dobdr” Ss :="hubav”
S, :="dobra” Sg := "hubava”
S3 :="dobro” 57 :="hubavo”
S4 := "dobre”

Common Functions Optimization

The function symbols in PMCFG could be reused in different
productions

PMCFG

G — A[G, G
G — A[G, G

Fi:=(S1,52,53,54) [u]

Coercion Rules

PMCFG

G
G

G
G
G

G

— F[G, G, G4z, C5]
— F1[G, C32, a1, C5]
— F1[G, G3, a1, C5]
— F[G, G, Ca2, C5]
— F[G, G2, Ca2, C5]
— F[G, G3, Ca2, C5]
— F1[C, Ga1, Gus, C5]
— F[G, G2, Gz, C5]
— F1[C2, Cs3, Ca3, C5]

PMCFG

G — A[G, G, G, G
G — [Gi]
G — [G]
G — [Gs]
Cy — _[Ca1]
Cy — _[Car]
Cp — _[Cy3]

u]
o)
1
n
it
)
»
i)

0 Debugging

Debugging the Compiler

You can dump the PMCFG representation of the grammar with the
following command:

c:\gf> gf -make -output-format=pmcfg_pretty LangMy.gf
Reading Lang.pgf...

Refusing to overwrite Lang.pgf

Writing LangEng.pmcfg...

This will produce one file with extension .pmcfg with four
interesting sections:

@ productions
e functions
@ sequences

@ startcats

Thank You and Have Fun !!!

o 5 = = E DA

	Introduction
	GF Core
	Optimizations
	Debugging
	Conclusion

