
Chapter 1: Compilation Phases

Aarne Ranta

Slides for the book ”Implementing Programming Languages. An

Introduction to Compilers and Interpreters”, College Publications,

2012.



Compilation Phases

Phases on the way from source code to machine code

Concepts and terminology for later discussions

Compilers vs. interpreters

Low vs. high level languages

Data structures and algorithms in language implementation



From language to binary

Machines manipulate bits: 0’s and 1’s.

Bit sequences used in binary encoding.

Information = bit sequences

Binary encoding of integers:

0 = 0

1 = 1

2 = 10

3 = 11

4 = 100



Binary encoding of letters, via ASCII encoding:

A = 65 = 1000001

B = 66 = 1000010

C = 67 = 1000011

Thus all data manipulated by computers can be expressed by 0’s and

1’s.

But what about programs?



Binary encoding of instructions

E.g. JVM machine language (Java Virtual Machine)

Programs are sequences of bytes - groups of eight 0’s or 1’s (there

are 256 of them)

A byte can encode a numeric value, but also an instruction

Examples: addition and multiplication (of integers)

+ = 96 = 0110 0000 = 60

* = 104 = 0110 1000 = 68

(The last figure is a hexadecimal, where each half-byte is encoded by

a base-16 digit that ranges from 0 to F, with A=10, B=11,. . . ,F=15.)



Arithmetic formulas

Simple-minded infix:

5 + 6 = 0000 0101 0110 0000 0000 0110

Actual JVM uses postfix

5 + 6 =⇒ 5 6 +

No need of parentheses:

(5 + 6) * 7 =⇒ 5 6 + 7 *

5 + (6 * 7) =⇒ 5 6 7 * +



Stack machines

JVM manipulates expressions with a stack - the working memory of

the machine

Values (byte sequences - 4 bytes in a 32-bit machine) are pushed on

the stack

The one last pushed is the top of the stack

An arithmetic operation such as + (usually called ”add”) takes (pops)

the two top-most elements and pushes their sum



Example: compute 5 + 6 (instructions on left, stack on right)

bipush 5 ; 5

bipush 6 ; 5 6

iadd ; 11

The instructions are shown as assembly code, human-readable names

for byte code.



A more complex example: the computation of 5 + (6 * 7)

bipush 5 ; 5

bipush 6 ; 5 6

bipush 7 ; 5 6 7

imul ; 5 42

iadd ; 47

In the end, there’s always just one value on the stack



Separating values from instructions

To make it clear that a byte stands for a numeric value, it is prefixed

with the instruction bipush

5 + 6 =⇒ bipush 5 bipush 6 iadd

To convert this all into binary, we only need the code for the push

instruction,

bipush = 16 = 0001 0000

Now we can express the entire arithmetic expression as binary:

5 + 6 = 0001 0000 0000 0101 0001 0000 0000 0110 0110 0000



Why compilers work

Both data and programs can be expressed as binary code, i.e. by 0’s

and 1’s.

There is a systematic .translation from conventional (”user-friendly”)

expressions to binary code.

Of course we will need more instructions to represent variables, assign-

ments, loops, functions, and other constructs found in programming

languages, but the principles are the same as in the simple example

above.



How compilers work

1. Syntactic analysis: Analyse the expression into an operator F and

its operands X and Y.

2. Syntax-directed translation: Compile the code for X, followed by

the code for Y, followed by the code for F.

Both use recursion: they are functions that call themselves on parts

of the expression.



Levels of languages

A compiler may be more or less demanding. This depends on the

distance of the languages it translates between. (Cf. English to French

is easier than English to Japanese.)

In computer languages,

• High level: closer to human thought, more difficult to compile

• Low level: closer to the machine, easier to compile

This is no value judgement, since low level languages are indispensable!



human

human language

ML Haskell

Lisp Prolog

C++ Java

C

assembler

machine language

machine

Some programming languages from the highest to the lowest

level.



Both humans and machines are needed to make computers work in the

way we are used to.

Some people might claim that only the lowest level of binary code is

necessary, because humans can be trained to write it.

But humans could never write very sophisticated programs by using

machine code only - they could just not keep the millions of bytes

needed in their heads.

Therefore, it is usually much more productive to write high-level code

and let a compiler produce the binary.



The history of programming languages shows progress from lower to

higher levels.

Programmers can be more productive when writing in high-level lan-

guages.

However, raising the level implies a challenge to compiler writers.

Thus the evolution of programming languages goes hand in hand with

developments in compiler technology.

It has of course also helped that the machines have become more

powerful:

• the computers of the 1960’s could not have run the compilers of

the 2010’s

• it is harder to write compilers that produce efficient code than ones

that waste some



A rough history of programming languages

• 1940’s: connecting wires to represent 0’s and 1’s

• 1950’s: assemblers, macro assemblers, Fortran, COBOL, Lisp

• 1960’s: ALGOL, BCPL (→ B → C), SIMULA

• 1970’s: Smalltalk, Prolog, ML

• 1980’s: C++, Perl, Python

• 1990’s: Haskell, Java



A compiler reverses the history of programming languages: from a
”1960’s” source language:

5 + 6 * 7

to a ”1950’s” assembly language

bipush 5 bipush 6 bipush 7 imul iadd

to a ”1940’s” machine language

0001 0000 0000 0101 0001 0000 0000 0110

0001 0000 0000 0111 0110 1000 0110 0000

The second step is very easy: look up the binary codes for each as-
sembly instruction and put them together in the same order.

The level of assembly is often regarded as separate from compilation
proper.



Compilation vs. interpretation

A compiler is a program that translates code to some other code. It

does execute the program.

An interpreter does not translate, but it executes the program.

A source language expression,

5 + 6 * 7

is by an interpreter turned to its value,

47



Combinations

• C is usually compiled to machine code by GCC.

• Java is usually compiled to JVM bytecode by Javac, and this byte-

code is usually interpreted, although parts of it can be compiled to

machine code by JIT (just in time compilation).

• JavaScript is interpreted in web browsers.

• Unix shell scripts are interpreted by the shell.

• Haskell programs are either compiled to machine code using GHC,

or to bytecode interpreted in Hugs or GHCI.

Notice: Java is not an ”interpreted language” - but JVM is!



Trade-offs

Advantages of interpretation:

• faster to get going

• easier to implement

• portable to different machines

Advantages of compilation:

• if to machine code: the resulting code is faster to execute

• if to machine-independent target code: the resulting code is easier

to interpret than the source code

JIT is blurring the distinction, and so do virtual machines with actual

machine language instruction sets, such as VMWare and Parallels.



Compilation phases

A compiler is a complex program, which should be divided to smaller

components.

These components typically address different compilation phases -

parts of a pipeline, which transform the code from one format to

another.

The following diagram shows the main compiler phases and how a

piece of source code travels through them.



57+6*result character string

↓ lexer

57 + 6 * result token string

↓ parser

(+ 57 (* 6 result)) syntax tree

↓ type checker

([i +] 57 ([i *] 6 [i result])) annotated syntax tree

↓ code generator

bipush 57 instruction sequence
bipush 6
iload 10
imul
iadd

Compilation phases from Java source code to JVM assembly code



• The lexer reads a string of characters and chops it into tokens.

• The parser reads a string of tokens and groups it into a syntax

tree.

• The type checker finds out the type of each part of the syntax

tree and returns an annotated syntax tree.

• The code generator converts the annotated syntax tree into a list

of target code instructions.

The difference between compilers and interpreters is just in the last

phase: interpreters don’t generate new code, but execute the old code.



Compilation errors

Each compiler phase can fail with a characteristic errors:

• Lexer errors, e.g. unclosed quote,

"hello

• Parse errors, e.g. mismatched parentheses,

(4 * (y + 5) - 12))

• Type errors, e.g. the application of a function to an argument of

wrong kind,

sort(45)



Front end and back end

Front end: analysis, i.e. inspects the program: lexer, parser, type

checker.

Back end: synthesis, i.e. constructs something new: code generator.

Errors on later phases than type checking are usually not supported;

cf. Robin Milner (the creator of ML): ”well-typed programs cannot

go wrong”.



Compile time vs. run time

Compilers can only find compile time errors.

Error detection at run time needs debugging.

As compilation is automatic and debugging is manual, efforts are made

to find more errors at compile time.



Examples of run-time errors

Array index out of bounds, if the index is a variable that gets its

value at run time.

Binding analysis of variables:

int main () {

int x ;

if (readInt()) x = 1 ;

printf("%d",x) ;

}

It is not decidable at compile time if x has a value.



More compilation phases

Desugaring/normalization: remove syntactic sugar,

int i, j ; =⇒ int i ; int j ;

This can be done early (which can result to worse error messages).

Optimizations: improve the code in some respect. This can be done

• source code optimization, precomputing values known at compile

time:

i = 5 + 6 * 7 ; =⇒ i = 47 ;

• target code optimization, replacing instructions with cheaper

ones:

bipush 31 bipush 31 =⇒ bipush 31 dup



(The gain is that the dup instruction is just one byte, whereas

bipush 31 is two bytes.)

Modern compilers may have dozens of phases, often performed on

the level of intermediate code, so that the work can be reused for

different source and target languges..



Theory and practice

phase theory
lexer finite automata
parser context-free grammars
type checker type systems
interpreter operational semantics
code generator compilation schemes

A theory

• provides declarative notations that support different implemen-

tations

• enables reasoning, e.g. checking if every program can be compiled

in a unique way

Syntax-directed translation is a common name for the techniques

used in type checkers, interpreters, and code generators alike.


