Grammatical Framework
Programming with Multilingual Grammars

With a Special Focus on Chinese

Sun Yat-Sen University, Guangzhou
23-27 September 2013

Aarne Ranta
http://www.cse.chalmers.se/~aarne/

Monday, September 23, 13

http://www.cse.chalmers.se/~aarne/
http://www.cse.chalmers.se/~aarne/

this

grammar

4

—® speaks

twenty

P languages
™ b o

Monday, September 23, 13

The goals of this course

® writing multilingual grammars
® using them for

® translation

® human-computer interaction
® running them

® in web applications

® on mobile phones (Android, iOS)

Monday, September 23, 13

A specific goal

* |mprove the grammar for Chinese
* Enable English-Chinese translation
* Build language learning applications
* Currently 6,000 words in Chinese

* Can we reach 20,000 words!?

Monday, September 23, 13

Course assighment

® Lijther
® add 500 new Chinese words

® Or
® build a GF application

Monday, September 23, 13

Schedule

Monday lecture 13-15 (19:00 - 21:35)

Tuesday lab 1-2 (8:00- 9:40), lecture 7-8 (13:30 - 15:10)
Wednesday lab1-2 (8:00- 9:40)

Thursday lecture 1-2 (8:00- 9:40), lab 13-15 (19:00 - 21:35)

Friday lab 10-11 (16:15 - 17:55)

Monday, September 23, 13

GF = Grammatical Framework

® a programming language for grammars
® so are YACC and Bison
® but GF is also for natural languages

e compiling natural language

Monday, September 23, 13

Focus of GF

® |ike compilers, unlike e.g. Google translate
® precision
® high quality
® grammatical correctness

® meaning preservation

Monday, September 23, 13

History of GF

® Started at Xerox Research in 1998

® now open-source, |00+ developers

® European projects: WebALT, MOLTO,
Monnet

® Companies: Ontotext (Bulgaria), Be
Informed (Holland), Lingsoft (Finland),
Galois (USA)

® |00+ publications, |0+ PhD theses

Monday, September 23, 13

The GF Book

onal Linguistics

e (SLI, Stanford, 201 |

pa
c
w
a
<
=
@]
=
>
=
v
v
|

® Soon available in

I s Chinese translation by
S Prof.Yan Tian of Jiao
R Tong University,
Shanghai

Monday, September 23, 13

sEZE

EAENEZE

A

VAR

B S 15 A dRE

Grammatical Framework

Programming with Multilingual Grammars

[ImiE] Aa

/

rne Ranta &
SRR
RNZF Rk

Shanghai Jiao Tong University Press Co., Limited

i

- SHANGHAI

AR EIT

Monday, September 23, 13

EAERE—MIHBENEEES, THREENESIEEMERIT, BER
READFITREZMBRIES . APEENANERTUARIERERREE
BARESINER, MURIMAE—ESRARE, WANERIERSE IEXE
RGEUKRBARES FERETIMUNE, BHRGIFMEIILSREHER
ES. EEALMNPRMRIAINITEIE S ZNMAERE CHENE,

FIERAPABTEIESFHIMENN, A, FlESTHENRZERNER
Ro A, BEFRURIWNAEAFT~EXKE, HAXPBNITEVIERFESH
A BR T A Z B RIESIERNINER,.

Monday, September 23, 13

How to translate these?

| ate bread with butter

| ate bread with you

Monday, September 23, 13

What | get from Google translate

| ate bread with butter.
ﬁnlz = /FHJU iEHai; @)

| ate bread with you.

iz 7 ESES5IRETE,

Monday, September 23, 13

What | get from GF

| ate bread with butter

Tz 7 e H—FeHY

’L}

| ate bread with you

IHEMIR—iclz 7 ET

”:u}

Monday, September 23, 13

Actually I could also get

| ate bread with butter

IEMEH—RlZ FETE

{u}

| ate bread with you

Tz 7 MfR—erE

Monday, September 23, 13

Structural ambiguity

| ate (bread (with butter))

| ((ate bread) (with friends))

Monday, September 23, 13

Familiar from mathematics

two plus three times four

2+3%4=14 [/=2+(3%4)
(2 +3) *4 =20

Monday, September 23, 13

Different syntax trees

Cl

/ \ /\

NP VP

l ‘ \ NP VP
Pron VPSlash NP / ‘ \
|
‘ I \ Pron VP Adv

|
|
| |
! V2 NP Adv ! / \ | \
| | |
: : ‘ \ ' VPSlash NP Prep NP
| |
I |
: : CN Prep NP | \
| [| I |
| [‘ | ‘ I |
: : : ! V2 CN | Pron
| ' N ! CN I I | |
' . | I | | |
S S . .
| I I I I ' ! '
			I	N			
[[[I							
			N				
[I		
		I I 1	I I I				
			I				
I ate bread with butter l ate bread with you

Monday, September 23, 13

Order vs. structure

® English:
® SubjectVerb (Object Adverb) -> SubjectVerb Object Adverb

Subject (Verb Object Adverb) -> SubjectVerb Object Adverb

® Chinese:
® SubjectVerb (Object Adverb) -> SubjectVerb Adverb Obiject

Subject (Verb Object Adverb) -> Subject Adverb Verb Obiject

Monday, September 23, 13

Word alighments

K e
Iz | —®» ate I
1 bread _ ate
llfl ?[ll with bread |
| butter with
. ’El__i
. you
1
[f ol J

Monday, September 23, 13

Compilers: aligning Java and |VM

iconst 2

J
I

iconst 2

‘o

imul . iconst 4

SR
iconst 3 + iconst 3 ><:
iconst 4 1add

1add 4 imul

Monday, September 23, 13

The principle of compilers (and GF)

Translate via abstract syntax

® shared, underlying tree structure

Languages differ in concrete syntax

® conversion of trees into strings

Monday, September 23, 13

An example of GF

Abstract syntax: tree construction function
for multiplication expressions

fun EMul : Exp -> Exp -> EXp
Concrete syntax: linearization to Java

lin EMul x v = x ++ "*" 44 vy
Concrete syntax: linearization to JVM

lin EMul x v = x ++ vy ++ "imul"

Monday, September 23, 13

Natural language in GF

Categories: types of expressions

e S sentence e.g. |eatrice FMZIR

* NP noun phrase eg. | £3%

e VP verbphrase e.g. eatrice RzZiR

I]/—

* V verb e.g. eat 4

Monday, September 23, 13

Abstract syntax functions

Predication, complementation, and a couple of
words:

fun
Pred : NP -> VP -> S
Compl : V. -> NP -> VP
1 : NP
Eat : V

Rice : NP

Monday, September 23, 13

Building an abstract syntax tree

We apply functions Compl and Pred:
Compl Eat Rice : VP

Pred I (Compl Eat Rice): S

Graphical version of the syntax tree:

Pred

/ \

Compl

Eat

Rice

Monday, September 23, 13

Concrete syntax: linearization to English

1in
Pred np vp = np ++ vp
Compl vZ np = v2 ++ np
1 = "I"
Rice = "rice"
Fat = "eat”

The symbol ++ means concatenation.

Monday, September 23, 13

Now we can linearize:
Pred I (Compl Eat Rice)
= "I" ++ ("eat" ++ "rice")

= "T eat rice"

Monday, September 23, 13

Concrete syntax: linearization to Chinese

1in
Pred np vp = np ++ vp
Compl vZ2 np = vZ ++ np
T = nﬁn
Rice = n/[:'&n

Fat = "[iz"

Monday, September 23, 13

Now we can linearize:

Pred I (Compl Eat Rice)

_ n:ﬂ%n 44 (nl]/'Zn 44 n/[:')in)

AT

Notice: spaces needed in English, should be
removed in Chinese.We will return to this.

Monday, September 23, 13

Using GF grammars

Ve want to use grammars
® in the GF shell
® in a web application
To do so, we
* write the grammars in .gf files

* compile the grammars

Monday, September 23, 13

Abstract syntax file: Basic.qg:

abstract Basic = {

flags startcat = S

cat

NP ;

VP ;

VA

fun

Pred : NP -> VP

Compl : V. -> NP

I : NP ;

Rice : NP ;

Fat : V ;

B

—— module header
-—- setting start category
-—- categories

-—- separated by semicolons

—— functions

-> VP ;

—-—- two dashes start a comment

Monday, September 23, 13

Concrete syntax file: BasicEng.gf

B

concrete BasicEng of Basic = { -- module header
lincat -— linearization types of cat’s
S = Str ;
NP = Str ;
VP = Str ;
V = Str ;
lin —-—- linearization rules of fun’s
Pred np vp = np ++ vp ;
Compl v . np = v ++ np ;
I ="1" ;
Rice = "rice" ;
Eat = "eat" ;

Monday, September 23, 13

Concrete syntax: BasicChi.gf
concrete BasicChi of Basic = {
flags coding = utf8 ; -- set non-latin character encoding
lincat -— the rest is exactly as in English...

S = Str ;

NP = Str ;

VP = Str ;

V. = Str ;
lin

Pred np vp = np ++ vp ;

Compl v . np = v ++ np ;

I = "&" ; -— ...except the words

Rice = "IR" ;

Eat = nizm ;

Monday, September 23, 13

Using the GF shell

|. Go to GF Download page to install GF:

http://www.grammaticalframework.org/download

2. Install GF (Linux, Mac OS,Windows)
3. Open the GF shell in your OS shell:

gt
4. Import the files you want
import BasicChi.gf BasicEng.gf

5. Parse, linearize, generate, translate,...

Monday, September 23, 13

http://www.grammaticalframework.org/download/index.html
http://www.grammaticalframework.org/download/index.html

Example GF shell session

* Import grammars

> import BasicChi.gf BasicEng.gf
linking ... OK
Languages: BasicChi BasicEng

* Parse English string into tree
Basic> parse -lang=Eng "I eat rice"

Pred I (Compl Eat Rice)

e Linearize tree into Chinese
Basic> linearize -lang=Chi Pred I (Compl Eat Rice)

* Mz iR
* Parse Chinese, linearize to English
Basic> parse -lang=Chi " 0z iR" | linearize -lang=Eng

I eat rice

* Generate random tree, linearize to both languages

Basic> generate random | linearize

w oz &

rice eats 1

Monday, September 23, 13

About GF shell commands

® parse maps strings to trees
® linearize maps trees to strings
® —1ang=XXX sets language (default: all)
e pipe | sends output to next command
® translate:parse | linearize
® generate random builds random trees

® test:generate random | linearize

Monday, September 23, 13

Testing a grammar

We already found an error in English:

Basic> generate random | linearize
® Tz

rice eats I

This should be

rice eats me

We will return to this.

Monday, September 23, 13

Web applications

|. Compile to pgf = Portable Grammar Format

aarne$S gf -make BasicChi.gf BasicEng.gf
linking ... OK
Writing Basic.pgf...

2. Start GF in server mode

aarne$ gf -server

Document root = /Users/aarne/Library/Haskell/ghc-7.4.2/1ib/gf-3.5/
share/www

Starting HTTP server, open http://localhost:41296/ in your web browser.

3. COP)’ Basic.pgf tO <document root>/grammars/

4. Open the link in Firefox - you get to GF Cloud

5. Select Minibar -> Grammar:Basic.pgf

Monday, September 23, 13

http://localhost:41296
http://localhost:41296

There are many cloud services available for GF grammars

GF Cloud Service

GF Cloud Service L -

@ localhost:41296 ' @ | (BY~ Google Q

@ GF Cloud Service
Web Applications

¢ Minibar (word-completing translation tool)

» Syntax Editor (for building and manipulating abstract syntax trees)

o Translation Quiz

¢ GF online editor for simple multilingual grammars

o Simple Translation Tool (bilingual document editor)

The Minibar is a “fridge magnet” based editor

Minibar
J Minibar L =
P localhost:41296/minibar/minibar.html <> (Gy g Goc

Minibar online

All

Chi

Eng
Grammar: Basic.pgf 38 F : From:| chi 3 To: . @ | Clear || Random |

Monday, September 23, 13

The easiest way to use GF

Cloud service on GF server:

http://cloud.grammaticalframework.org/

Select GF online editor for simple multilingual grammars CO WO rk
in GF without installing anything!

Monday, September 23, 13

http://cloud.grammaticalframework.org
http://cloud.grammaticalframework.org
http://localhost:41296/gfse/
http://localhost:41296/gfse/

|) @ localhost:41296/gfse/ ' & | (B}~ Google Q) B3

GF online editor for simple multilingual grammars

Unnamed View: column || matrix || row | ~ Compile || Minibar || Quiz || X |
Abstract
abstract Unnamed = Text mode
cat
fun

| Enable editing on touch devices. Hover over items for hints and editing options.

% At this point, we will do some
cloud work on translating,
generating, grammar testing, and
language training.

Monday, September 23, 13

The power of GF

® shared abstract syntax

® different words

® different word orders

® translate A to B = parse A | linearize B

® works for any number of languages

Monday, September 23, 13

The problem with English

® Western languages have inflection: words
have many forms

e Chilz: Eng eat, eats, ate, eaten, eating

® |nflection is used in agreement: the form
chosen depends on other words

e Chi ¥X iz, ftiliz ; Eng | eat, he eats

® How can we do this in GF?

Monday, September 23, 13

Parameters and tables
We linearized V (and VP) as strings:

lincat V = Str

We can change this to a table, a.k.a.a
finite function:

lincat V = Number => Str

It depends on a parameter:
param Number = Sg | Pl
Now every verb has two forms:

lin Eat =

table {Sg => "eats"; Pl => "eat"}

Monday, September 23, 13

Records

The form of a verb is determined by the subject
NP.

Therefore, an NP has an inherent number. It is
stored in a record:

lincat NP = {s : Str ; n : Number}
lin I = {s = "I" ; n = P1l}
lin Rice = {s = "rice" ; n = Sqg}

Sg = Singular, Pl = Plural.

Monday, September 23, 13

Agreement

The inherent number of NP is passed to the VP,
to select the proper form:

lin Pred np vp = np.s ++ vp ! np.n
Read this:

The string of the NP followed by the form of the VP
selected for the number of the NP

Monday, September 23, 13

The complete code

param

Number = Sg | Pl ;

lincat
S = Str ;
NP = {s : Str ; n : Number} ;

VP = Number => Str ;
V = Number => Str ;
lin

Pred np vp = np.s ++ vp ! np.n ;

Compl v np table {n => v ! n ++ np.s} ;
I = {s — qu s n = Pl} ;
Rice = {s = "rice" ; n = Sg} ;

Eat = table {Sg => "eats" ; Pl => "eat"} ;

Monday, September 23, 13

One problem solved

The form of the verb gets right now:

Pred Rice (Compl Eat I)

-> rice ++
(table {Sg => "eats" ; Pl => "eat"} ! Sg ++ "I")

-> "rijce eats I"

But how to get rice eats me !

Monday, September 23, 13

Just another parameter

Noun phrase forms depend on case:

param Case = Nom | Acc

lincat NP = {s : Case => Str ; n : Number}

lin T = {s = table {Nom => "I" ; Acc => "me"} ; n = P1l}
lin Rice = {s = table { => "rice"} ; n = Sg}

Nom = Nominative, Acc = Accusative.

=> means “‘for all values of the parameter”.

Monday, September 23, 13

Putting the case parameter in place

concrete BasicEng of Basic = {

param

Number = Sg | Pl ;

Case = Nom | Acc ;
lincat
S = Str ;
NP = {s : Case => Str ; n : Number} ;

VP = Number => Str ;

V = Number => Str ;

lin
Pred np vp = np.s ! Nom ++ vp ! np.n ;
Compl v np = \\n => v ! n ++ np.s ! Acc ;
I = {s = table {Nom => "I" ; Acc => "me"} ; n = Pl} ;

Rice = {s = table { => "rice"} ; n = Sg} ;

Eat = table {Sg => "eats" ; Pl => "eat"} ;

}

This is the final, correct version of BasicEng.gf.

Monday, September 23, 13

Adverbs

Adverbs: modifiers of verbs (and other
expressions as well:

with butter, in the house, tomorrow

In Chinese, adverbs come before the
modified expression.

In English, they come after.

Chinese also has to add some extra words.

Monday, September 23, 13

Adding adverbs to Basic

Abstract syntax
AdvVP : VP -> Adv -> VP
AdvNP : NP -> Adv —-> NP
Concrete syntax, English

AdvVP vp adv = table {n => vp ! n ++ adv}
AdvNP np adv =

{s = table {¢c => np.s ! ¢ ++ adv} ; n = np.n}

Concrete syntax, Chinese

AdvVP vp adv = "FE" ++ adv ++ VP

AdvNP np adv = adv ++ "HY" ++ np

Monday, September 23, 13

Forming adverbs

The most productive way: preposition + NP

With : NP -> Adv
Without : NP -> Adv

English:
With np = "with" ++ np.s ! Acc
Without np = "without" ++ np.s ! Acc
Chinese:
With np = "#I" ++ np ++ "— #&"
Without np = "% B" ++ np

NB. there are many other translations of with.

Monday, September 23, 13

Trying out word order with adverbs

Basic> p -lang=Eng "I eat bread with butter" | 1 -treebank
1. Basic: Pred I (AdvVP (Compl Eat Bread) (With Butter))

BasicChi: B MM & H — £z @ &

BasicEng: I eat bread with butter
2. Basic: Pred I (Compl Eat (AdvNP Bread (With Butter)))

RasicChi: ¥ lz f1 @ H — &£ B @ &

BasicEng: I eat bread with butter

Basic> p -lang=Eng "I eat bread with you" | 1 -treebank
1. Basic: Pred I (AdvVP (Compl Eat Bread) (With You))
BasicChi: ¥ &£ f R — &£ Iz @ &

BasicEng: I eat bread with you
2. Basic: Pred I (Compl Eat (AdvNP Bread (With You)))

BasicChi: ¥ Iz f1 R — &£ BV @ &

BasicEng: I eat bread with you

Monday, September 23, 13

Ambiguity

® A string that parses to many trees is
ambiguous

® This is one of the main problems of NLP
(=Natural Language Processing)

® Example: translation from English to Chinese
needs disambiguation.

¢ syntactic ambiguity: whether the
Adv modifies NP or VP

¢ lexical ambiguity: many senses of
with

Monday, September 23, 13

Addressing lexical ambiguity

|. Define a separate abstract syntax function
for each sense

With : NP -> Adv

With company : NP -> Adv

2. Linearizations of each sense may or may
not be different

Chinese: With np = "HM" ++ np ++ "— RC"

With company np = "ER" ++ np

English: With company np "with" ++ np

3. Try to pick the tree with the right sense

Monday, September 23, 13

Basic> p

1. Basic:

BasicChi:

BasicEng:

2. Basic:

BasicChi:

BasicEng:

3. Basic:

BasicChi:

BasicEng:

4. Basic:

BasicChi:

BasicEng:

-lang=Eng "I eat rice with you" |

1l -treebank

Pred I (AdvVP

T &£ MR — & g ik

(Compl Eat Rice) (With You))

I eat rice with you

Pred I (AdvVP (Compl Eat Rice)

T &£ R R g ik

(With company You))

I eat rice with you

Pred I (Compl Eat (AdvNP Rice (With You)))

I Iz M R — & B ik

I eat rice with you

Pred I

T Iz IR R #Y 1R

(Compl Eat (AdvNP Rice (With company You)))

I eat rice with you

Monday, September 23, 13

Morphology

® the study of different forms of words

® in Western languages, a word can have
thousands of forms

* in English, at most 5; in Finnish, up to 10k

® we don’t want to write all forms in the
grammar, but define functions that
produce them

® morphological function = paradigm

Monday, September 23, 13

English regular verb paradigm

resource English = {

param
VForm = Inf | Pres | Past | PastPart | PresPart ;
oper
regV : Str -> VForm => Str = \walk -> table {
Inf => walk ;
Pres => walk + "s" ;
Past | PastPart => walk + "ed" ;
PresPart => walk + "ing"

yos

—-— examples
Walk = regV "walk" ;
Annoy = regV "annoy" ;

Reject = regV "reject" ;

Monday, September 23, 13

Almost regular verbs

Ending with s, sh, x, z,...:

kiss, kisses, kissed, kissed, kissing

Ending with e:

use, uses, used, used, using

Ending with y:

cry, cries, cried, cried, crying
Except if preceded by a vowel:

blay, blays, played, played, playing
Ending with vowel + consonant:

wrap, wraps, wrapped, wrapped, wrapping

Monday, September 23, 13

Smart paradigms

Functions with regular expression pattern
matching:

smartV : Str -> VForm => Str = \s -> case s of {
I ("S"|"Sh"|"X") =>
table VForm [S ’. S+"€S" ’. S_I_"ed" ; S_I_"ed" ; S_I_"ing-"] ;
x + "e" =>
table VForm [s ; s+"s" ; s+"d" ; s+"d" ; x+"ing"]
| ("a"|"e"|"O"|"u") + "y"
=> regV s ;
x + nyn =>
table VForm [s ; xt"ies" ; x+"ied" ; x+"ied" ; s+"ing"] ;
=>

regV s

Monday, September 23, 13

What we have shown so far

GF can define grammatical correctness

GF can relate many languages via abstract
syntax

GF can be run in the shell, to develop and
test grammars

GF can be run on the web, to build end-
used applications

Monday, September 23, 13

VVhat we have not shown yet

® GF supports big grammars
® GF supports disambiguation

® GF grammars can be written without
knowing the target language

® GF grammars can be combined with
statistics

® GF grammars can be run on mobile devices

® GF grammars support speech and dialogue
applications

Monday, September 23, 13

Plan for tomorrow
Lab 8-9.40
® get everyone started with GF installation

® complete the Basic grammar with some
useful things

Lecture 13:30-15:10

® introduce the GF Resource Grammar
Library (RGL)

® show how RGL helps language learning

® show how to write big grammars, even
without knowing the target language

Monday, September 23, 13

