
Multilingual Text Generation for
Abstract Wikipedia in Grammatical
Framework: Prospects and Challenges

Aarne Ranta

Abstract Abstract Wikipedia is an initiative to produce Wikipedia articles
from abstract knowledge representations with multilingual natural language
generation (NLG) algorithms. Its goal is to make encyclopaedic content avail-
able with equal coverage in the languages of the world. This paper discusses
the issues related to the project in terms of an experimental implementation
in Grammatical Framework (GF). It shows how multilingual NLG can be or-
ganized into different abstraction levels that enable the sharing of code across
languages and the division of labour between programmers and authors with
different skill requirements. The plan is to start with a simple but functional
multilingual NLG system and to proceed towards more and more sophisti-
cated language and wider coverage of topics, also allowing a human in the
loop to create content via a Controlled Natural Language (CNL).

Key words: Abstract Wikipedia, Controlled Natural Language, Gram-
matical Framework, Natural Language Generation, Text robots, Wikidata,
Wikipedia

1 Introduction

Abstract Wikipedia is a recent initiative launched by the Wikimedia Foun-
dation [44]. Its purpose is to support the universal availability of Wikipedia
in different languages. At the time of writing, Wikipedia has 328 languages,
most of which have only very few articles available1.

Aarne Ranta

Department of Computer Science and Engineering, Chalmers University of Technology and
University of Gothenburg

aarne.ranta@cse.gu.se

1 See https://meta.wikimedia.org/wiki/List_of_Wikipedias for an up-to-date list.

1

https://meta.wikimedia.org/wiki/List_of_Wikipedias
Aarne Ranta
To appear in Loukanova, R., Lumsdaine, P. L., and Muskens, R., editors, Logic and Algorithms in Computational Linguistics 2021 (LACompLing2021), Studies in Computational Intelligence (SCI), Springer Nature Switzerland, Cham, 2022.

Aarne Ranta
Users may only view, print, copy, download and text- and data-mine the content, for the purposes of academic research. The content may not be (re-)published verbatim in whole or in part or used for commercial purposes. Users must ensure that the author’s moral rights as well as any third parties’ rights to the content or parts of the content are not compromised.�

2 Aarne Ranta

The method chosen in Abstract Wikipedia is Natural Language Generation
(NLG) based on Wikidata, which is a database of formalized facts [45]. These
facts are stored as RDF triples (Resource Description Framework), which
are two-place predications of the form xRy, where R is a predicate and x and
y are its arguments. As an example, consider the fact

wd:Q30 wdt:P1082 331449281

whose parts are the unique identifiers wd:Q30 (for the USA) and the relation
wdt:P1082 (for the predicate “has population”) and a numeric constant.
Simple NLG can convert this triple to texts such as

The population of the United States is 331,449,281. (English)

Yhdysvaltain asukasluku on 331 449 281. (Finnish)

La population des États-Unis est 331 449 281. (French)

Die Einwohnerzahl der Vereinigten Staaten ist 331.449.281. (German)

The advantages of NLG, as opposed to manual authoring and translation,
are several:

• Consistency: the content can be guaranteed to be the same in all versions
of Wikipedia.

• Speed: versions in different languages can be produced in a fraction of a
second.

• Cost: no human labour is needed to create new articles, but only for
developing the algorithms.

• Updates: the content of articles can be kept up to date when facts change.
• Customization: different views of the same content, e.g. summaries and

local adaptations, can be produced via suitable parameters in the algo-
rithms.

All of these advantages are relevant for Wikipedia. Inconsistencies are a
known problem in the current set-up based on manual work: versions in
different languages can vary in size and content, and even contradict each
other. Producing content in new languages is slow. Cost is one of the main
reasons of this: it is labour-intensive to write and translate articles. Delayed
updates cause errors in even well-supported languages. Customization is very
limited, as it has to be done manually.

Now, NLG is an old idea with well-known algoritms [39]. It has even been
used in Wikipedia, often under the name of text robots, which have pro-
duced millions of articles in several languages [46]. Hence, given the advan-
tages of NLG, why is it not the standard way to produce and translate ar-
ticles? Anyone who has tried to use NLG or read articles produced by text
robots can probably list a number of problems that explain this:

• Style: NLG-produced text is “robotic” — boring, repetitive, unidiomatic.

Multilingual Text Generation for Abstract Wikipedia 3

• Lack of data: most of the content included in Wikipedia articles is not
available in Wikidata or in any other database of formalized facts, and
much of it might not even be possible to formalize.

• Cost: developing NLG algorithms might be a one-time cost, but so high
that it is cheaper to write articles by hand.

• Human resources: writing NLG algorithms is a skill that might not be
available for all languages.

• Community resistance: text robots, machine translation, and other au-
tomatic language processing methods are often discouraged or even pro-
hibited in the Wikipedia community [47].

In this paper, we will outline an approach to Abstract Wikipedia that demon-
strates the advantages and addresses the challenges. The presentation is based
on actually existing code, which is publicly available2. However, as the code is
a moving target under constant development, we will neither show all details
of it here nor guarantee that the examples are completely up to date. The
code repository itself contains updated documentation and also a tutorial for
readers who want to try it out or develop it further.

2 From Templates to Rendering Functions

The simplest kind of NLG, often used in text robots, is templates: texts
with slots for variable arguments. Thus the following template could express
the population of any country (or other geographical area) in English:

The population of {X} is {Y}.

Templates work reasonably well in English, where words need not often be
inflected. However, a familiar exception is shown when one of the variables
is a number attached to a noun:

You have {X} new messages.

If X =1, the result is grammatically incorrect and reveals the robotic origin of
the text. In other languages, the limits of templates are reached much more
often. Thus in French, one should produce

La population de la Suède for X =Suède (Sweden),

La population du Danemark for X =Danemark (Denmark),

La population des États-Unis for X =États-Unis (United States).

The variable in the template could of course contain not only the country
name but also the preposition with the article (de la, du, des). However,
the country name is also used in other contexts, with other prepositions and
possibly without articles. For example, to express “in a country”, we write

2 https://github.com/aarneranta/NLG-examples

https://github.com/aarneranta/NLG-examples

4 Aarne Ranta

en Suède,

au Danemark,

aux États-Unis.

Yet different forms are needed when the country name appears as a subject
or an object of a sentence.

A purely template-based solution to the country name problem is to insert
a “carrier noun”, pays (“country”), which is inflected in a uniform way:

La population du pays {X} est {Y}.

{Y} habite dans le pays {X}.

(the latter means “Y lives in the country X.”) This technique is very com-
monly used in internet services, which do not always need to hide their robotic
origin. But it is also used for rendering person profiles in social media. Since
such media try to give a friendly impression, robotic language in them can be
disturbing. In Wikipedia, it would result in a kind of text that the community,
or readers in general, would have difficulties to accept.

A solution to the problem, proposed for Abstract Wikipedia, is to replace
templates by proper rendering functions. Such a function could for in-
stance wrap template variables by calls of grammatical case:

La population {GENITIVE(X)} est {Y}.

{Y} habite {LOCATIVE(X)}.

The system then needs, in addition to the templates, definitions of the
GENITIVE and LOCATIVE functions for every possible value of X. This can
be done as long as there is a limited number of such values, but it adds to the
cost and the human resources needs of the system. Creating the templates
also becomes more demanding, because the author needs to know where to
use which of the cases. In fact, the problem is even more complex: think
about facts of the form “X was born in Y ”. The French template would
need to make a difference between male and female values of X to get the
agreement of the word for “born” right:

{X} est {IF FEMININE(X) THEN née ELSE né} {LOCATIVE(Y)}

In addition to knowledge required about agreement in French grammar, the
template notation itself starts to get complicated. And this is just the simplest
case, with a choice from two forms: if the changing part is a verb, the template
has to choose from six forms (two numbers times three persons).

As one more problem to be solved in rendering functions, even the order
of words may need to be varied. Consider the German template for “X was
born in Y ”, for simplicity without cases (of which German has four):

{X} wurde in {Y} geboren.

Multilingual Text Generation for Abstract Wikipedia 5

Now, in Wikipedia, it is customary to indicate the sources of facts by links or
references. When a fact is disputed, it can be appropriate to describe different
opinions by phrases such as nach Z (“according to Z ”), Z glaubt, dass (“Z
believes that”). In such contexts, German grammar requires the word order
of the “born” template to be changed:

Nach {Z} wurde {X} in {Y} geboren.

{Z} glaubt, dass {X} in {Y} geboren wurde.

Hence, not only do we need templates for thousands of predicates, but there
have to be (at least) three templates for every predicate to get the word order
right in all contexts, plus a device in the template notation that enables us
to select the correct alternative.

3 Rendering Functions in Grammatical Framework

Agreement and word order are familiar from school grammar and hence by no
means advanced concepts. But their precise treatment in formal grammars in
computational linguistics is considered specialist knowledge, and in real-world
NLG templates, they are usually avoided altogether by using techniques such
as carrier nouns.

Grammatical Framework (GF, [34]) is a programming language that aims
to make linguistic knowledge accessible to programmers. Abstract Wikipedia
has mentioned GF as a possible technology, and the goal here is to inves-
tigate how far it can reach. In GF, grammatical features such as inflection,
agreement, and word order can be defined by linguistically knowledgeable
programmers in the form of software libraries and reused by non-linguist
engineers for different purposes such as NLG [32]. In this way, an equiva-
lent of linguistics-aware rendering functions can be written in a format that
essentially looks as templates (see Sect. 6 below).

GF is a special-purpose functional programming language with many fea-
tures, which can be learned from tutorials and manuals on the web3 and
from the GF book [34]. It inherits much of its syntax from Haskell4, but adds
some constructs relevant for grammars, such as regular expression pattern
matching used for morphology. Like Haskell, GF is statically typed, which is
a guarantee that grammars do not fail at runtime. A more special feature is
reversibility: GF grammars can be used for both parsing and generation,
as well as their composition, translation.

Viewed as a grammar formalism, a special feature of GF is that it divides
grammar specifications into abstract syntax and concrete syntax parts.
An abstract syntax defines a set of trees, and a concrete syntax specifies

3 http://www.grammaticalframework.org/
4 https://www.haskell.org/

6 Aarne Ranta

how they are linearized in different languages. One and the same abstract
syntax can have several concrete syntaxes, which results in multilingual
grammars. In a multilingual grammar, translation is defined as parsing
with one concrete syntax and linearization with another one.

The largest set of languages covered by a GF grammar known to us has
over 90 languages and defines their numeral systems with a shared abstract
syntax [19]. A more general grammar, the GF Resource Grammar Library,
defines syntactic structure, morphology, and basic lexicon for 55 languages, of
which around 40 have complete implementations of a comprehensive shared
abstract syntax [33]. This library has played a major role in almost all multi-
lingual text generation projects in GF, including academic projects on topics
such as software specifications [7], mathematics [40, 35], cultural heritage
[11], law [2], and healthcare [26], as well as various commercial projects5.

As a first example of GF, consider templates of the form

the {F} of {X} is {Y}

which can express many RDF triples of Wikidata. Its implementation in GF
consists of an abstract syntax function and its linearization function,
marked by the keywords fun and lin, respectively:

fun AttrFact : Attr -> Obj -> Val -> Fact

lin AttrFact attr obj val =

"the" ++ attr ++ "of" ++ obj ++ "is" ++ val

In words, the function AttrFact takes three arguments — an attribute, and
object, and a value — and returns a fact. Its linearization combines these
arguments by concatenation (operator ++), with some string literals added
in between. The types of these arguments must match the argument types
specified in the fun definition. Like Haskell, GF uses the arrow syntax for
function types, and the prefix notation for function application.

The abstract function AttrFact can be used for building infinitely many
trees of type Fact. An example is the tree

AttrFact population_Attr (NameObj USA_Name) (IntVal 331449281)

in GF’s prefix notation. An equivalent graphical representation is

AttrFact

population_Attr NameObj IntVal

USA_Name 33144928

5 Some of them can be traced from http://grammaticalframework.org

http://grammaticalframework.org

Multilingual Text Generation for Abstract Wikipedia 7

Given obvious linearization functions for population Attr, NameObj, USA Name,
and IntVal, this tree is linearized to

the population of the United States is 33144928.

The above kind of purely concatenative linearization is a special case of
GF, corresponding to templates with slots. Similar linearization functions
could be defined for other languages as well — but, as we saw in Sect. 1, this
would not generalize well over languages. To enable grammatically correct
linearizations in all contexts and in all languages, GF generalizes linearization
from string concatenation by adding three concepts: parameters, tables,
and records.

Grammatical number, case, and gender are examples of parameters, de-
fined as enumerated (and, more generally, finite algebraic) datatypes with
the keyword param. The following definitions are suitable for German:

param Number = Sg | Pl

param Case = Nom | Acc | Dat | Gen

param Gender = Masc | Fem | Neutr

These definitions are used in type checking to guarantee the consistency of
grammars. But unlike fun definitions, they belong to the concrete syntax:
different languages can define Number, Case, and Gender in different ways
— or not at all, if the language lacks the feature in question.

GF tables are used for expressing inflection tables such as noun declen-
sions. Technically, they are functions over parameter types. As an example,
consider the table for the German noun Stadt (“city”) and its encoding in
GF, in Fig. 1. Notice the wildcard patterns that match cases that are not
mentioned explicitly, with a standard notation used in functional program-
ming. Wildcard patterns make it possible to avoid the repetition of similar
forms, which typically appear in inflection tables written in the full form. The
type checker of GF makes sure that all of the four cases and two numbers
are matched.

In addition to the table, Fig. 1 indicates that Stadt is a feminine noun
(n.f.). The gender of nouns is not a variable feature that produces different
forms like number and case do (with some exceptions such as König - Königin
“king - queen”): it is an inherent feature of nouns. Inherent features can
be collected into GF records, together with all other information about a
word. The record shown in Fig. 1 contains both the inflection table and the
inherent gender.

Morphological features are used in syntax to implement agreement. To
give one example in full detail, let us consider a simple one: one item vs. two
items. A possible abstract syntax function for you have X Ys is

fun YouHaveItems : Numeral -> Item -> Statement

8 Aarne Ranta

Stadt, n.f.

Sg Pl

Nom Stadt Städte

Acc Stadt Städte

Dat Stadt Städte

Gen Stadt Städten

{s = table {

Sg => table {_ => "Stadt"} ;

Pl => table {Dat => "Städten" ; _ => "Städte"} ;

g = Fem

}

Fig. 1 Inflection table and inherent gender of German Stadt and its representation in GF.

A proper linearization requires that every Numeral has a grammatical number
(singular or plural) attached as an inherent feature. For example6,

lin one_Numeral = {s = "one" ; n = Sg}

lin two_Numeral = {s = "two" ; n = Pl}

In addition, every Item (noun) has grammatical number as a variable feature,
producing different forms in a table:

lin message_Item = table {Sg => "message" ; Pl => "messages"}

The linearization function of YouHaveItems implements agreement as an in-
terplay between inherent and variable features:

lin YouHaveItems num it = "you have" ++ num.s ++ it!num.n

Here, num.s is the s-field projected from the record, and it!num.n is the
value selected from the table to match the n field of the record.

4 Abstraction Levels in GF

The simple mechanism of tables and records has turned out sufficient to
model all kinds of agreement and other variation found in the languages that
have been implemented in GF so far, including, in addition to several Ger-
manic, Romance, and Slavic languages, also Fenno-Ugric [25], Indo-Iranian
[43], Semitic [10, 8], Bantu [30, 5, 22], and East-Asian [48, 38] languages.

To give one more example, German word order can be defined by a table
that reorders the subject, verb, and complement, as a function of a parameter

6 These are special cases of a more general recursive definition of numerals [19]. Different

languages may require more distinctions than just singular/plural: Arabic, for instance,

has five different agreement patterns, whose GF implementation is explained in [9]

Multilingual Text Generation for Abstract Wikipedia 9

that stands for main clause, inverted clause, or subordinate clause (which are
three values of an Order parameter type):

table {

Main => subj ++ verb ++ compl ;

Inv => verb ++ subj ++ compl ;

Sub => subj ++ compl ++ verb

}

At least as important for the current task as the record and table mechanism
itself is the possibility to hide it. This is provided by the Resource Gram-
mar Library (RGL), which defines the details of syntax and morphology
and exports them via a high-level API (Application Programming Interface)
[33]. The complete API is at the time of writing available for 40 languages. It
also contains extensive lexical resources for more than half of them. Table 1
relates the available RGL resources to Wikipedias in different languages.

With the RGL API, the linearization of YouHaveItems can be defined as
follows:

lin YouHaveItems num it = mkCl you_NP have_V2 (mkNP num it)

The API function mkCl builds a clause (Cl) from a noun phrase (NP), a two-
place verb (V2), and another noun phrase7. The pronoun you NP is directly
available in the API, and so is the verb have V28. The object noun phrase is
built by the function mkNP, which combines a numeral with a noun. Under
the hood, mkNP takes care of the choice of the singular or the plural, whereas
mkCl takes care of subject-verb agreement (have vs. has)9.

So far, we have seen how GF can express agreement and other kinds of
variation and how the RGL can hide the details from the application pro-
grammer. But we have not seen the ultimate abstraction yet: the language-
independence of the RGL API. The above linearization rule for YouHaveItems
has in fact exactly the same code for every language that implements the RGL
API, but compiles into different records and tables under the hood. To give
some examples of what happens,

• mkNP selects the gender of the numeral as a function of the noun in Ro-
mance and Slavic languages,

7 It is a convention in the RGL that syntactic functions building values of type C have

the name mkC, i.e. “make” C. These names are overloaded: all such functions can have the
same name, as long as they have different lists of argument types so that the type checker

can resolve them. Thus it is often possible to guess a function name without looking it up.
8 These functions, as lexical functions in general, take no arguments and cannot thus be
resolved by type checking. The RGL convention is to denote them by English words suffixed

with part of speech tags.
9 The concept of a verb in the RGL is more abstract than in traditional grammars. Thus
the abstract two-place verb have V2 is in some languages implemented with non-verbal

constructions such as prepositional phrases in Arabic: “I have a dog” is rendered ladayya

kalbun, literally “with me a dog”.

10 Aarne Ranta

language articles RGL language articles RGL

English 6,545,975 +++ Esperanto 323,608 +
Cebuano 6,125,812 - Hebrew 321,316 +

German 2,719,877 +++ Danish 284,290 ++

Swedish 2,552,522 +++ Bulgarian 283,953 +++
French 2,450,741 +++ Slovak 241,847 +

Dutch 2,099,691 +++ Estonian 229,915 +++

Russian 1,849,325 +++ Greek 212,862 ++
Spanish 1,798,346 +++ Lithuanian 204,111 +

Italian 1,769,757 +++ Slovenian 177,533 +*

Egyptian Arabic 1,597,544 ** Urdu 176,166 +++
Polish 1,534,113 +++ Norwegian (Nynorsk) 162,695 ++

Japanese 1,340,051 ++ Hindi 152,475 +++

Chinese 1,300,293 +++ Thai 149,693 +++
Vietnamese 1,275,688 - Tamil 148,547 +

Waray-Waray 1,265,938 - Latin 136,958 +*
Ukrainian 1,190,703 - Latvian 115,349 +++

Arabic 1,184,349 ++ Afrikaans 104,596 +++

Portuguese 1,094,514 +++ Swahili 74,639 +*
Persian 925,446 ++ Icelandic 54,803 ++

Catalan 709,317 +++ Punjabi 38,549 ++

Serbian 662,099 - Nepali 32,241 ++
Indonesian 627,502 * Interlingua 24,231 ++

Korean 603,549 +* Mongolian 21,436 +++

Norwegian (Bokm̊al) 597,046 ++ Sindhi 15,251 ++
Finnish 537,889 +++ Amharic 15,051 ++

Turkish 514,410 +* Zulu 10,583 +

Hungarian 511,089 + Somali 8,467 +*
Czech 509,155 + Maltese 4,842 +++

Chechen 481,958 - Xhosa 1,240 +
Serbo-Croatian 456,901 + Tswana 773 +

Romanian 433,112 +++ Greenlandic 244 +

Min Nan 431,714 - Greek (Ancient) - +
Tatar 417,595 - Chiga (Rukiga) - +

Basque 397,843 ++ Kikamba - +

Malay 360,146 + Egekusii - +

Table 1 Wikipedias in different languages, according to https://meta.wikimedia.org/

wiki/List_of_Wikipedias retrieved 30 August 2022, and their coverage in the current GF

RGL, sorted by the number of articles. The third column shows the status of the RGL:
+++ means full API coverage with a large lexicon, ++ means full or almost full API
coverage with a smaller lexicon, +* partial API coverage with a large lexicon, + means

implementation started, - means not started. * and ** mean corresponding coverage in a
closely related language: Arabic for Egyptian Arabic, Malay for Indonesian. The languages

on the left are the 35 top languages of Wikipedia, including those without RGL. The

languages on the right are those after the top 35 that have some RGL coverage. Four
of the RGL languages were not found in the list of Wikipedias, but this may be due to

different names used for them.

https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/List_of_Wikipedias

Multilingual Text Generation for Abstract Wikipedia 11

• mkNP selects the number and case of the noun as a function of the number
in Slavic languages and Arabic,

• mkNP adds a classifier to the noun in Chinese and Thai,
• mkCl selects the word order in German, Dutch, and Scandinavian,
• mkCl selects complement cases and prepositions of two-place verbs as

needed in almost all languages,
• mkCl implements the ergative agreement in Basque, Hindi, and Urdu,
• mkCl selects and orders clitic pronouns in Romance languages and Greek.

To sum up, using RGL API implies that

• those who write rendering functions do not need to worry about low-
level linguistic details, but only about the abstract syntax types of their
arguments and values;

• a rendering function written for one language is ready to be used for all
RGL languages.

These two things together have made GF into a productive tool for multilin-
gual NLG. The code sharing for rendering functions is formally implemented
by means of functors, a.k.a. parameterized modules, which are instan-
tiated to different languages by selecting different instances of the RGL API
[31]. In this way, the actual code for the rendering functions does not even
need to be seen by the programmer that uses the code for a new language.

Scaling up GF and RGL to the Wikipedia task requires “only” that the
RGL be ported to all remaining Wikipedia languages. What this means in
terms of effort and skill is a topic worth its own discussion, to which we will
return in Sect. 10.

5 Smart Paradigms and the Lexicon

The RGL API offers functions such as mkCl and mkNP shown above to com-
bine phrases into larger phrases. The smallest building blocks of phrases are
lexical units, i.e., words with their inflection tables and inherent features.

We have seen one, two, and message, as examples of lexical units rep-
resented as records and tables. The RGL provides high-level APIs for con-
structing them. For most languages, it provides smart paradigms, which
build complete tables and records from one or few characteristic forms [12].
For example, English has two smart paradigms for nouns (N):

mkN : Str -> N

mkN : Str -> Str -> N

The former paradigm takes one string as its argument, the singular form of
the noun. It returns a table that also contains the plural form, where the
usual stem alternations are carried out, such as baby-babies, bus-buses. To

12 Aarne Ranta

form the plural, regular expression pattern matching is used. A slightly
simplified function for this, also usable for the 3rd person singular present
indicative of verbs, is

add_s w = case w of {

_ + ("a"|"e"|"o"|"u") + "y" => w + "s" ; -- boy, boys

stem + "y" => stem + "ies" ; -- fly, flies

_ + ("ch"|"s"|"sh"|"x"|"z") => w + "es" ; -- bus, buses

_ => w + "s" -- cat, cats

}

(the notation -- marks comments in GF, here showing examples of words
matching each pattern). If a noun has an irregular plural (like man-men), the
two-argument function is used. Thus the programmer who builds a lexicon
just needs to use expressions such as

mkN "continent"

mkN "country"

mkN "Frenchman" "Frenchmen"

with no worries about the internal records and tables or pattern matching.
In German, a particularly useful paradigm is

mkN : Str -> Str -> Gender -> N

which can for instance generate the record shown in Fig. 1 above, by

mkN "Stadt" "Städte" Fem

For languages other than English, smart paradigms typically have to do more
work, such as produce the 51 forms of the French verb or over 200 forms of the
Finnish verb. Evaluations have shown that even in highly inflected languages,
all forms of most words can be inferred from just one or two characteristic
forms [12]10. This means that a morphologically complete lexicon can be built
rapidly and on a low level of skill. What is more, lexicon building can often be
automated: a list of words equipped with part of speech information (noun,
adjective, verb) can be mechanically converted into a list of smart paradigm
applications.

Many languages have existing morphological dictionaries independent of
GF, for instance in Wiktionary as well as in Wikidata itself11. Such resources
can often be converted to GF records and tables, which means that rendering
functions can just use abstract syntax names such as country N and not even
care about smart paradigms. However, previously unseen words can always be
encountered in texts, especially ones containing specialized terminology, and

10 A typical exception are Indo-European verbs that may need three or more forms, but

there are usually just a few hundred of them, and they can be collected into a static lexicon.
11 Wikidata lexicographical resources, https://www.wikidata.org/wiki/Wikidata:

Lexicographical_data

https://www.wikidata.org/wiki/Wikidata:Lexicographical_data
https://www.wikidata.org/wiki/Wikidata:Lexicographical_data

Multilingual Text Generation for Abstract Wikipedia 13

smart paradigms are then needed to add them to the lexicon. Moreover, for
many of those 300 languages that Abstract Wikipedia targets, comprehensive
morphological dictionaries do not exist, and defining smart paradigms for
them is an essential part of the RGL building effort.

The lexical items standing for atomic concepts are often not expressible by
single words: depending on language, they may be multiword expressions
with internal syntactic structure. As an example, consider the concept “stan-
dard data protection clause” from the General Data Protection Regulation
(GDPR) of the European Union12. It is a typical example of a legal con-
cept that has established translations into different languages. Its syntactic
category is common noun (CN), equipped with a plural form and, in many
languages, a gender. To form the plural and identify the gender, one needs to
know the syntactic structure — in particular, the head of the phrase. Thus
we have:

• standard data protection clause(s) (English, head last),
• clause(s) type(s) de protection des données (French, head first, first two

words inflecting),
• clausol(a/e) tipo di protezione dei dati (Italian, head first, only the first

word inflecting),
• Standarddatenschutzklausel(n) (German, single word).

For multiword terms, a handful of syntactic functions are needed in addition
to the morphological paradigms in order to define inflection and gender. Thus
for instance the French linearization is defined by adding layers of modifica-
tion to the head noun clause N:

mkCN (mkCN type_A clause_N)

(mkAdv de_Prep (mkNP (mkCN protection_N

(mkAdv (mkAdv de_Prep (mkNP thePl_Det donnée_N))))))

Writing such complex GF expressions by hand can be demanding, but they
can fortunately often be obtained by using RGL grammars for parsing. In the
present case, the parser must convert the string clause type de protection des
données into an abstract syntax tree of type CN. This technique, known as
example-based grammar writing, has been used to enable native speakers
to provide grammar rules without writing any code [37].

6 More Abstraction Levels

We have gone through three abstraction levels that a GF rendering function
(i.e. linearization) can be defined on:

12 Over 3000 GDPR concepts in five languages have been collected to a GF lexicon in a

commercial project, https://gdprlexicon.com/.

https://gdprlexicon.com/

14 Aarne Ranta

• Records and tables, mostly needed just inside the RGL;
• RGL API functions, used for building new rendering functions;
• Wikipedia rendering functions, such as AttrFact.

Higher levels can use the lower levels as libraries (in the sense of software
libraries), which means that they can take earlier work for granted. As ex-
plained in more detail in Sect. 10, we do not expect Abstract Wikipedia
authors to use GF on the level of records and tables. Even the level of RGL
API is too low for most authors: the main level to work on will be by using
the high-level rendering functions, built by a smaller group of experts.

On the level that uses Wikipedia rendering functions, only a small frag-
ment of GF notation is needed: function applications and strings. These con-
structs are so ubiquitous that they do not even need the GF programming
language. Instead, they can be used directly in a general purpose language
via bindings that are available as a part of the GF software. This tech-
nique is called embedded grammars and enables programmers to use GF
grammars without writing any GF code.

To give an example, consider a rendering function for “the F of X is Y ”
and its RGL linearization for different languages,

fun AttrFact : Attr -> Obj -> Val -> Fact

lin AttrFact attr obj val =

mkCl (mkNP the_Det (mkCN attr obj)) val

A grammar module containing this function can be called from Python by
importing it as a Python module, calling it (for example) G, and writing

G.AttrFact(G.population_Attr, G.NameObj(name), G.IntVal(pop))

where the variables name and pop get their values directly from Wikidata.
The only API that the programmer needs to know are the abstract syntax
types of the linearization functions.

Embedded GF grammars are available for C, C#, Haskell, Java, and
Python13. A further abstraction level on top of this is Wikifunctions, which
is an emerging technology for accessing all kinds of functions via a web API,
hiding the underlying programming language [44]. The plans for Abstract
Wikipedia include making GF rendering functions available on this level.

Another direction in which the abstraction from GF code can be extended
is by using the parser of GF from a general purpose language. The above call
of the rendering function can thus be accessed via its linearization, where
slots are left for the values. Here is the equivalent code in Python:

str2exp("the population of {X} is {Y}".format(X=name, Y=pop))

The string argument of str2exp looks exactly like a template, but str2exp

calls the GF parser to convert strings to GF abstract syntax trees that can

13 http://www.grammaticalframework.org/doc/runtime-api.html

http://www.grammaticalframework.org/doc/runtime-api.html

Multilingual Text Generation for Abstract Wikipedia 15

be linearized in multiple languages, of course obeying all their grammatical
rules beyond string concatenation.

With the parser, the programmer who implements NLG rules can thus use
GF rendering functions without even knowing the names of those functions.
She just needs to know what can be parsed by the grammar. However, since
this can be difficult and error-prone, and since parsing can be ambiguous, the
more precise use of imported modules may still be needed as a back-up.

7 Improving the Style

In classical rule-based NLG, data is converted to text in several steps [39]:

• Content determination: what to say.
• Text planning: in what order to say it.
• Aggregation: merging atomic facts into compound sentences.
• Lexical choice: selecting words for concepts.
• Referring expression generation: using pronouns and other alternative ex-

pressions for entities.
• Surface realization: selecting the final word order and morphological forms.

We have by now mostly focused on surface realization. When working on
highly multilingual tasks, this is the most demanding component, because of
the huge differences between the surface grammars of languages.. We have
shown how the RGL gives a solution to this problem. Surface realization is
also the clearest contribution that GF itself can make to NLG; most of the
other steps can be easier to perform in a general purpose language embedding
GF in the way shown in Sec. 6. These steps can operate on the abstract syntax
of the GF and thereby deal with several languages at the same time.

Lexical choice is also defined by GF functions and their linearizations for
all data entities. One improvement above the monotonic phrasing the F of X
is Y is to define predicate-specific functions, such as

fun PopulationFact : Obj -> Int -> Fact

linearized X has Y inhabitants. Such functions can be language-specific, if a
language happens to have a nice idiom for a certain concept. But they can also
be cross-lingual and defined by functors, possibly for a subset of languages for
which they are natural and which can implement them. Thus a new language
added to the system can start with baseline, monotonic renderings early in
the process and get incremental stylistic improvements later.

Starting with the beginning of the pipeline, content determination at its
simplest is to take all facts in Wikidata about some object, such as a country,
and convert them into sentences of the form “the F of X is Y ”, rendered
as “the F s of X are Y ” when Y contains multiple values. The resulting

16 Aarne Ranta

text is extremely boring, but it “does the job” in the sense of expressing the
information in a grammatically correct way in multiple languages.

Predicate-specific rendering functions are perhaps the simplest way to im-
prove style. A more general way is to add functions that implement text
planning, aggregation, and referring expression generation:

OneSentDoc : Sent -> Doc -- S.

AddSentDoc : Doc -> Sent -> Doc -- D. S.

ConjSent : Sent -> Sent -> Sent -- S and S

NameObj : Name -> Obj -- Argentina

PronObj : Name -> Obj -- it

These functions can be used to implement document-level templates, such as
the following creating small but reasonably fluent articles about countries:

str2exp("Doc",

("{c} is a {co} country with {p} inhabitants . "

"its area is {a} . "

"the capital of {c} is {ca} and its currency is {cu} ."

).format(

c=countr, co=cont, p=pop, a=area, ca=cap, cu=curr))

Our experimental implementation14 has around 40 GF functions, which can
be combined to text templates for different purposes; the main test cases
have been geographical data and Nobel prize winners15.

While the GF functions and templates are language-independent, the NLG
system can customize their use for individual languages. As an obvious exam-
ple, the area of a country may be converted from square kilometres to square
miles for some countries. As a more intricate one, the referring expression
generation may utilize the gender systems of different languages to enable
the most compact expressions: in English, the pronoun it is often ambigu-
ous and therefore not adequate, whereas each of German er, sie, es can be
unambiguous in the same context.

8 Selecting Content

The document template for countries in the previous section builds a text
from atomic facts: continent, population, area, capital, currency. All these
facts are directly available as RDF triples in Wikidata and can therefore be
automatically picked into documents. However, texts in general can choose to

14 https://github.com/aarneranta/NLG-examples
15 Notice that the co argument expects an adjective such as Asian. Such adjectives, known
as demonyms, are in a natural way included in the linearization records of geographical
names. Also notice that the string has been manually tokenized to help the GF parser.

https://github.com/aarneranta/NLG-examples

Multilingual Text Generation for Abstract Wikipedia 17

drop out some facts and also to state facts that are not directly available in
the data. For example, China has the largest population in the world is a fact
verifiable in Wikidata, but requires a more complex query than an individual
triple, for instance, a Python expression

maxpop = max(cont_data, key=lambda c: c.population).country

which is an example of aggregation in the database (rather than NLG)
sense. Once this query has been performed and the fact established, the value
of maxpop can be reported in a text, instead of stating the exact populations
of all countries.

Here is a Python template for summaries of facts about continents and
the whole world:

doc = factsys.str2exp("Doc",

("there are {n} countries in {co} ."

"the total population of {co} is {p} ."

"{mp} has the largest population "

"and {ma} has the largest area .".format(

n = ncountries, co = cont, p = totalpop,

mp = maxpop, ma = maxarea)

Here is a text generated in English, Finnish, and German. The last sentence
of these texts is not shown in the template. It is included only in regions that
actually have countries with over a billion inhabitants16.

There are 194 countries in the world. The total population of the world is 7552
million. China has the largest population and Russia has the largest area. India and

China are the only countries with over a billion inhabitants.

Maailmassa on 194 maata. Maailman yhteenlaskettu asukasluku on 7552 miljoonaa.

Kiinalla on suurin asukasluku ja Venäjällä on suurin pinta-ala. Intia ja Kiina ovat

ainoat maat, joissa on yli miljardi asukasta.

Es gibt 194 Länder in der Welt. Die gesamte Einwohnerzahl der Welt ist 7552

Millionen. China hat die größte Einwohnerzahl und Russland hat die größte Fläche.
Indien und China sind die einzigen Länder mit über einer Milliarde Einwohnern.

Notice that all the facts stated in the above texts may change over time. For
example, India is predicted soon to have a larger population than China. A
new text can then be generated by exactly the same grammar, template, and
queries, to reflect this change.

16 The expression 7552 million is a result of rounding the exact population. Different
rounding functions are available in the grammar, and the NLG has the task to select an
approriate one.

18 Aarne Ranta

9 Authoring

In the previous examples, as usual in traditional NLG, the content was se-
lected automatically by an algorithm that decided which facts where inter-
esting. The algorithm also decided the text structure. This is undeniably the
fastest and cheapest way to make information available in natural language.

However, fully automatic NLG has two serious shortcomings. First, algo-
rithms cannot always predict which facts are interesting for human readers.
Secondly, the content in Wikipedia articles is not always available in Wiki-
data. To solve these problems, we invoke the parser of GF once again and
move from automated NLG to interactive authoring. The idea is simply
that articles are written by human authors, just like in traditional Wikipedia.
But unlike in traditional practices, they are parsed into abstract syntax, ver-
ified with respect to Wikidata, and automatically translated to all languages
that have a concrete syntax in GF. What is more, the document that is stored
as abstract syntax can be edited later by other authors, possibly via input in
other languages. Figure 2 shows the architecture of the authoring system.

Fig. 2 Text generation from a fact database with a human author in the loop.

The idea of interactive authoring was in fact the starting point of whole
GF. GF was first created at Xerox in the project entitled Multilingual Docu-
ment Authoring [14], which in turn was inspited by WYSIWYM (“What You
See is What You Mean”, [29]). GF was designed to be a general formalism
for defining Controlled Natural Languages (CNL). A CNL is a fragment of
natural language with (often, even if not always) formal grammar and se-
mantics [23, 16]. In the case of GF, the formal grammar is moreover divided
into abstract and concrete parts, which makes it multilingual [4].

One challenge in CNL-based authoring is to make sure that the authors’
input can be parsed in the fragment recognized by the grammar. Tools for
this have been developed throughout the history of GF [18, 21, 36, 20, 1],
but there is still room for improvement.

Multilingual Text Generation for Abstract Wikipedia 19

Another challenge, more specific to the Wikipedia case, is that the formal
semantics is never going to be complete. As already mentioned, many things
that authors want to express might not be present in Wikidata. It can also
happen that Wikidata is wrong, or even contradictory. The authoring system
can accommodate this by enabling the author to extend or change Wikidata
when such situations occur.

10 Roles and Skills

The success of Abstract Wikipedia depends ultimately on getting the com-
munity involved. No person or research group could ever recreate all the
content in abstract form and define all the required rendering functions in all
languages. Community members should be enabled to contribute at different
levels of skills:

• GF implementers: a specialist group working on the internal algorithms of
GF and their integration with Wikipedia software;

• RGL writers: linguistically proficient programmers implementing new lan-
guages;

• NLG programmers: implementers of rendering functions for new concepts
and new textual forms;

• Domain experts: programmers who adapt rendering functions to new do-
mains and terminologies;

• Content creators: authors of articles and providers of Wikidata.

As we go down the list, more and more people are needed in each role, while
their GF and programming skill requirements decrease.

Starting with GF implementers, this has always been a group of just a few
persons. We do not expect that many more are necessarily needed, because
GF is already a mature and stable software infrastructure that has been
used in numerous NLG projects. Some new functionalities are planned as
research projects, in particular dynamic loading and updating of grammars,
automated extraction of parts of grammars, and support for Wikifunctions.
But even the current implementation is sufficient to get started.

RGL writers are needed for every new language, one or two per language,
which means that a few hundred need to be trained to reach the goal of
300 languages. The series of GF Summer Schools organized since 200917 has
shown that a two-week intensive training is enough for this task. Writing
an RGL implementation for a new language itself typically takes two to six
person months. In the Abstract Wikipedia project, this task can, however, be
started with a subset of the RGL: the experimental implementation described
here uses less than 20% of the common abstract syntax functions. Hence a

17 http://school.grammaticalframework.org

http://school.grammaticalframework.org

20 Aarne Ranta

basic rendering system for a new language can be released after a few weeks’
work. By using functors (see Sect. 4), one can moreover share most of the
concrete syntax code inside language families, so that only one language in
the family needs a fully procifient RGL programmer, whereas the others
can be added more easily by informants for those languages who provide
values to functor parameters. This method has been extensively applied in
Scandinavian, Romance [31], Indo-Iranian [43], and Bantu [22] families.

NLG programmers implement rendering functions by using the RGL, as
well as text templates written in a general purpose host language such as
Python. These programmers need to have skills in the host language but can
do with a fragment of GF sufficient for using the RGL API.

Domain experts have as their main task to define rendering functions for
technical terms, that is, lexical items and multiword expressions. They do not
necessarily need GF knowledge, but can just provide strings to be parsed and
converted to records and tables via morphological lexica and RGL functions,
including smart paradigms. In other words, the domain expert provides the
translations of the terms, whereas the RGL generalizes them to rendering
rules. The process can be helped by existing sources such as Wikidata lexical
resources and WordNets [15, 3].

Content creators, finally, will be the vast majority of Abstract Wikipedia
contributors. All Wikipedia authors should be enabled to create abstract con-
tent via an easy to use authoring system. Ideally, the overhead of generating
abstract content should be small enough to be compensated by the availabil-
ity of automatic translations to other languages and semantic checking.

11 First Results

Most of the examples above come from an experiment where Wikidata about
194 countries was used for generating articles in four languages: English,
Finnish, German, and Swedish. To show how the methods generalize, the
experiment was completed by articles about 818 Nobel prize winners:

Gerty Cori won the Nobel Prize in Physiology or Medicine in 1947. She was born

in Prague in the Czech Republic in 1896. Cori died in 1957. Gerty Cori was the

first woman that won the Nobel Prize in Physiology or Medicine.

The main new feature shown here is the use of tenses. Apart from that, the
rendering functions originally written for geographic data were sufficient for
the new domain with only a few additions18.

The first experiment was carried out by the author of this paper. But how
easy is the task for people with no previous GF experience? This was tested

18 One problem should be noticed: in 1896, the Czech Republic did not exist, but Prague

was a city in the Austro-Hungarian Empire. Thus more care would have been needed when

combining Nobel prize data with geographical data.

Multilingual Text Generation for Abstract Wikipedia 21

in Spring term 2022 by a group of six Bachelor students in Computer Science,
who built a system addressing 1235 localities in Sweden [13]. For this group,
a 4-hour crash course in GF was given, as well as weekly 1-hour supervision
sessions during 12 weeks. The group used the same basic grammar as in the
original experiment. In addition to extending the lexicon in the domain expert
role, they also extended the texts with new kinds of information, for example,
about famous persons and their professions coming from the localities. This
experiment can be considered successful in showing how much can be done
with a minimal specific training.

Four other student projects in Spring term 2022 were Masters theses ad-
dressing research questions related to Wikipedia. One was about formal se-
mantics, interpreting abstract syntax trees in a model based on Wikidata
[41]. This was a standard kind of Montague-style logical semantics [27, 42]
extended with anaphora resolution and a treatment of sentences that could
not be decided in the model. What results from the latter is technically a
third truth value. The authoring interface can warn the user about it, or also
give her the option to update the semantic model with new facts.

A second Masters thesis built language models, both n-gram and neural,
for Wikipedia in 46 languages, with the purpose to assess the fluency of
generated texts and help select the most fluent ones of alternative renderings
in each language [24]. Unlike purely statistical or neural generation, which
has no guarantees to match a non-linguistic reality [6], this use of language
models is controlled by the semantics. In the resulting pipeline, rule-based
NLG generates several renderings of the same facts, all of them semantically
correct, and the language model ranks them in terms of fluency.

The third project was about multilingual treebanks built by parsing a
set of Wikipedia articles in 58 languages with Universal Dependencies (UD,
[28]). The result was a ranked set of syntactic structures used in Wikipedias,
as well as a cross-lingual comparison of how similar the structures are [17].
This makes it possible to estimate how often a functor-based linearization is
adequate. The results were moreover used in a fourth project, still in progress
at the time of writing, to extract GF rendering functions from UD trees that
are actually used in the current Wikipedia.

In addition to the directly NLG-related projects, resource development has
started to export GF lexical data into Wikidata, in connection with the GF-
WordNet project19. At the time of writing, such resources have been exported
for 24 languages, around 590k entries per language.

19 http://cloud.grammaticalframework.org/wordnet/

http://cloud.grammaticalframework.org/wordnet/

22 Aarne Ranta

12 Conclusion

The goal of this paper has been to show that the advantages of NLG — consis-
tency, speed, cost, updates, and customization — are relevant for Wikipedia
and can be scaled up to a multilingual setting by using GF. We have gone
through some results from an experimental implementation and addressed
some known problems and how to mitigate them:

• Robotic style: can be improved by adding more NLG functions (Sect. 7)
and, in particular, by enabling human authoring via a CNL (Sect. 9) .

• Lack of data: can be completed as a by-product of authoring (Sect. 9). But
even now, there is enough Wikidata to create useful content even though
the whole Wikipedia cannot be covered.

• Cost: can be reduced by abstract syntax and functors, which enable code
sharing between languages (Sect. 3).

• Human resources: can be helped with tools such as parsing and authoring,
so that most of the work needs only minimal training (Sect. 10) .

• Community resistance: many of the earlier problems of text robots and
automatic translation can be avoided. But it remains to be seen how the
wider community responds to this initiative.

A baseline implementation already exists and can be applied to new areas
of knowledge and adapted to new languages. Even though perfection might
never be achieved, gradual improvements can enable more and more content
to be created with better and better style in more and more languages.

Using GF for this task has a number of advantages. First, the Resource
Grammar Library is a unique resource for multilingual generation functions.
As it contains even less-represented languages (see Table 1), adding more
such languages looks like a realistic goal.

Secondly, GF has programming language support for linguistic constructs,
and the community has a long experience of using it for many kinds of lan-
guages. Using GF, rather than a general purpose programming language,
for grammar implementation is analogous to using YACC-like tools for pro-
gramming language implementation: even though general purpose languages
by definition are theoretically sufficient for implementing grammars, doing
this would require many times more effort and low-level repetitive coding.

Thirdly, GF has APIs that allow it to be embedded in general purpose
languages. Thus programmers can use GF functionalities — in particular,
the RGL — without writing any GF code at all. Reproducing the knowledge
contained in the RGL, rather than importing it via embedded grammars,
would involve person decades of duplicate work.

This said, Abstract Wikipedia is a challenge that exceeds previous applica-
tions of GF, or any other NLG project, by at least two orders of magnitude:
it involves almost ten times more languages and at least ten times more
variation in content than any earlier project.

Multilingual Text Generation for Abstract Wikipedia 23

Acknowledgements

I am grateful to Denny Vrandečić for inspiring discussions about the Abstract
Wikipedia project and to the anonymous referees for insightful comments on
this paper. Special thanks go to Roussanka Loukanova for her extraordinarily
supportive editorial help.

References

1. Angelov, K., Bringert, B., Ranta, A.: Speech-enabled hybrid multilingual translation

for mobile devices. In: Proceedings of the Demonstrations at the 14th Conference of

the European Chapter of the Association for Computational Linguistics, pp. 41–44.
Gothenburg, Sweden (2014)

2. Angelov, K., Camilleri, J., Schneider, G.: A framework for conflict analysis of normative

texts written in controlled natural language. The Journal of Logic and Algebraic
Programming 82, 216–240 (2013)

3. Angelov, K., Lobanov, G.: Predicting Translation Equivalents in Linked WordNets.

In: The 26th International Conference on Computational Linguistics (COLING 2016),
p. 26 (2016)

4. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: CNL-2009,
Controlled Natural Language Workshop, Marettimo, Sicily, 2009 (2009)

5. Bamutura, D., Ljunglöf, P., Nabende, P.: Towards Computational Resource Grammars

for Runyankore and Rukiga. In: Language Resources and Evaluation (LREC) 2020,
pp. 2846–2854. Marseille, France (2020)

6. Bender, E.M., Koller, A.: Climbing towards NLU: On meaning, form, and under-

standing in the age of data. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 5185–5198. Association for Com-

putational Linguistics, Online (2020). DOI 10.18653/v1/2020.acl-main.463. URL

https://aclanthology.org/2020.acl-main.463

7. Burke, D.A., Johannisson, K.: Translating Formal Software Specifications to Natural

Language / A Grammar-Based Approach. In: P. Blache and E. Stabler and J. Bus-

quets and R. Moot (ed.) Logical Aspects of Computational Linguistics (LACL 2005),
LNCS/LNAI, vol. 3492, pp. 51–66. Springer (2005). http://www.springerlink.com/

content/?k=LNCS+3492

8. Camilleri, J.J.: A Computational Grammar and Lexicon for Maltese. Master’s the-

sis, Chalmers University of Technology, Gothenburg, Sweden (2013). URL http:

//academic.johnjcamilleri.com/papers/msc2013.pdf

9. Dada, A.: Implementation of the Arabic Numerals and Their Syntax in GF. In: Pro-

ceedings of the 2007 Workshop on Computational Approaches to Semitic Languages:

Common Issues and Resources, Semitic ’07, p. 9–16. Association for Computational
Linguistics (2007)

10. Dada, A.E., Ranta, A.: Implementing an Open Source Arabic Resource Grammar in
GF. In: 20th Arabic Linguistics Symposium. Western Michigan University March 3-5
2006 (2006)

11. Dannélls, D., Damova, M., Enache, R., Chechev, M.: Multilingual online generation

from semantic web ontologies. In: Proceedings of the 21st international conference on
World Wide Web, pp. 239–242. ACM (2012)

12. Détrez, G., Ranta, A.: Smart paradigms and the predictability and complexity of
inflectional morphology. In: EACL 2012 (2012)

https://aclanthology.org/2020.acl-main.463
http://www.springerlink.com/content/?k=LNCS+3492
http://www.springerlink.com/content/?k=LNCS+3492
http://academic.johnjcamilleri.com/papers/msc2013.pdf
http://academic.johnjcamilleri.com/papers/msc2013.pdf

24 Aarne Ranta

13. Diriye, O., Folkesson, F., Nilsson, E., Nilsson, F., Nilsson, W., Osolian, D.: Multilin-

gual Text Robots for Abstract Wikipedia. Bachelor’s thesis, Chalmers University of
Technology, Gothenburg, Sweden (2022)

14. Dymetman, M., Lux, V., Ranta, A.: XML and multilingual document authoring: Con-

vergent trends. In: Proc. Computational Linguistics COLING, Saarbrücken, Germany,
pp. 243–249 (2000)

15. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)

16. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowl-
edge Representation. In: C. Baroglio, P.A. Bonatti, J. Ma luszyński, M. Marchiori,

A. Polleres, S. Schaffert (eds.) Reasoning Web, Fourth International Summer School
2008, no. 5224 in LNCS, pp. 104–124. Springer (2008)

17. Grau Francitorra, P.: The Linguistic Structure of Wikipedia. Master’s thesis, Univer-

sity of Gothenburg, Gothenburg, Sweden (2022)
18. Hallgren, T., Ranta, A.: An Extensible Proof Text Editor. In: M. Parigot, A. Voronkov

(eds.) LPAR-2000, LNCS/LNAI, vol. 1955, pp. 70–84. Springer (2000). http://www.

cse.chalmers.se/~aarne/articles/lpar2000.pdf

19. Hammarström, H., Ranta, A.: Cardinal Numerals Revisited in GF. In: Workshop on

Numerals in the World’s Languages, Dept. of Linguistics, Max Planck Institute for

Evolutionary Anthropology, Leipzig (2004)
20. Kaljurand, K., Kuhn, T.: A multilingual semantic wiki based on Attempto Controlled

English and Grammatical Framework. In: The Semantic Web: Semantics and Big

Data, pp. 427–441. Springer (2013)
21. Khegai, J., Nordström, B., Ranta, A.: Multilingual Syntax Editing in GF. In: A. Gel-

bukh (ed.) Intelligent Text Processing and Computational Linguistics (CICLing-2003),
Mexico City, February 2003, LNCS, vol. 2588, pp. 453–464. Springer-Verlag (2003)

22. Kituku, B., Nganga, W., Muchemi, L.: Leveraging on Cross Linguistic Similarities to

Reduce Grammar Development Effort for the Under-Resourced Languages: a Case
of Kenyan Bantu Languages. In: 2021 International Conference on Information and

Communication Technology for Development for Africa (ICT4DA), pp. 83–88 (2021).

DOI 10.1109/ICT4DA53266.2021.9672222
23. Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Computa-

tional Linguistics 40(1), 121–170 (2014)

24. Le, J., Zhou, R.: Multilingual Language Models for the Evaluation and Selection of
Auto-Generated Abstract Wikipedia Articles. Master’s thesis, Chalmers University of

Technology, Gothenburg, Sweden (2022)

25. Listenmaa, I., Kaljurand, K.: Computational Estonian Grammar in Grammatical
Framework. In: 9th SaLTMiL Workshop on Free/open-Source Language Resources

for the Machine Translation of Less-Resourced Languages, LREC 2014, Reykjav́ık
(2014)

26. Marais, L., Pretorius, L.: Exploiting a multilingual semantic machine translation archi-

tecture for knowledge representation of patient information for covid-19. pp. 264–279
(2021)

27. Montague, R.: Formal Philosophy. Yale University Press, New Haven (1974). Collected

papers edited by Richmond Thomason
28. Nivre, J., de Marneffe, M.C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C.D., Mc-

Donald, R., Petrov, S., Pyysalo, S.m., Silveira, N., Tsarfaty, R., Zeman, D.: Universal
Dependencies v1: A Multilingual Treebank Collection. In: Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC 2016), pp.

1659–1666. European Language Resources Association (ELRA), Portorož, Slovenia

(2016). URL https://www.aclweb.org/anthology/L16-1262

29. Power, R., Scott, D.: Multilingual authoring using feedback texts. In: COLING-ACL

(1998)
30. Pretorius, L., Marais, L., Berg, A.: A GF miniature resource grammar for Tswana:

modelling the proper verb. Language Resources and Evaluation 51(1), 159–189 (2017)

http://www.cse.chalmers.se/~aarne/articles/lpar2000.pdf
http://www.cse.chalmers.se/~aarne/articles/lpar2000.pdf
https://www.aclweb.org/anthology/L16-1262

Multilingual Text Generation for Abstract Wikipedia 25

31. Ranta, A.: Modular Grammar Engineering in GF. Research on Language and Com-

putation 5, 133–158 (2007)
32. Ranta, A.: Grammars as Software Libraries. In: Y. Bertot, G. Huet, J.J. Lévy,

G. Plotkin (eds.) From Semantics to Computer Science. Essays in Honour of Gilles

Kahn, pp. 281–308. Cambridge University Press (2009)
33. Ranta, A.: The GF Resource Grammar Library. Linguistics in Language Technology

2 (2009)

34. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

35. Ranta, A.: Translating between language and logic: What is easy and what is difficult.
In: N. Bjørner, V. Sofronie-Stokkermans (eds.) Automated Deduction – CADE-23, pp.

5–25. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

36. Ranta, A., Angelov, K., Hallgren, T.: Tools for multilingual grammar-based translation
on the web. In: Proceedings of the ACL 2010 System Demonstrations, pp. 66–71.

Uppsala, Sweden (2010). URL https://aclanthology.org/P10-4012.pdf

37. Ranta, A., Détrez, G., Enache, R.: Controlled Language for Everyday Use: the MOLTO
Phrasebook. In: CNL 2012: Controlled Natural Language, LNCS/LNAI, vol. 7175

(2010)

38. Ranta, A., Tian, Y., Qiao, H.: Chinese in the Grammatical Framework: Grammar,
Translation, and Other Applications. In: Proceedings of the Eighth SIGHAN Workshop

on Chinese Language Processing, ACL, pp. 100–109. Beijing, China (2015). URL

http://www.aclweb.org/anthology/W15-3117

39. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge

University Press (2000)
40. Saludes, J., Xambo, S.: The GF mathematics library. In: THedu’11 (2011)

41. Stribrand, D.: Semantic Verification of Multilingual Documents. Master’s thesis,

Chalmers University of Technology, Gothenburg, Sweden (2022)
42. Van Eijck, J., Unger, C.: Computational semantics with functional programming.

Cambridge University Press (2010)

43. Virk, S.: Computational linguistics resources for Indo-Iranian languages. Ph.D. thesis,
Dept. of Computer Science and Engineering, Chalmers University of Technology and

Gothenburg University (2013)

44. Vrandečić, D.: Building a Multilingual Wikipedia. Communications of
the ACM 64(4), 38–41 (2021). https://cacm.acm.org/magazines/2021/4/

251343-building-a-multilingual-wikipedia/fulltext

45. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Commun.
ACM 57(10), 78–85 (2014). DOI 10.1145/2629489. URL https://doi.org/10.1145/

2629489

46. WikipediaContributors: Lsjbot. https://en.wikipedia.org/wiki/Lsjbot (2022). On-

line; accessed 20 April 2022

47. WikipediaContributors: Wikipedia:Content translation tool. https://en.wikipedia.

org/wiki/Wikipedia:Content_translation_tool (2022). Online; accessed 20 April

2022

48. Zimina, E.: Fitting a Round Peg in a Square Hole: Japanese Resource Grammar in
GF. In: JapTAL, vol. 7164, pp. 156–167. LNCS/LNAI, Kanazawa (2012)

https://aclanthology.org/P10-4012.pdf
http://www.aclweb.org/anthology/W15-3117
https://cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/fulltext
https://cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/fulltext
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://en.wikipedia.org/wiki/Lsjbot
https://en.wikipedia.org/wiki/Wikipedia:Content_translation_tool
https://en.wikipedia.org/wiki/Wikipedia:Content_translation_tool

	Multilingual Text Generation for Abstract Wikipedia in Grammatical Framework: Prospects and Challenges
	Aarne Ranta
	Introduction
	From Templates to Rendering Functions
	Rendering Functions in Grammatical Framework
	Abstraction Levels in GF
	Smart Paradigms and the Lexicon
	More Abstraction Levels
	Improving the Style
	Selecting Content
	Authoring
	Roles and Skills
	First Results
	Conclusion
	Acknowledgements
	References
	References

