Simple Database Mathematics and the

Query Converter

by Aarne Ranta
http://www.cse.chalmers.se/~aarne/
March 2015

Preface

This document is written to satisfy three needs:

e fill in the formal definitions that were missing in the material used at an introductory
database course, http://www.cse.chalmers.se/edu/year/2015/course/TDA357/\VT2015/

e explain the ideas implemented in an emerging piece of software, the Query Converter
(gconv) http://www.grammaticalframework.org/~aarne/query-converter/

e create a concise summary of the main mathematical concepts of databases

The writing started in March 2015, addressing the goals in this very order. Hence it has
increasingly many holes when we go down the list.

The material is inherited from many sources:

e the slides and other documents created by earlier teachers (including at least Jonas
Almstrém Duregard, Niklas Broberg, Rogardt Heldal, and Graham Kemp)

e the course book, Database Systems: the Complete Book by Garcia-Molina, Uliman,
and Widom
http://catalogue.pearsoned.co.uk/educator/product/Database-Systems-The-Complete-
Book-International-Version/9780131354289.page
research papers and Wikipedia articles
a textbook draft by Jyrki Nummenmaa (in Finnish)

But the presentation and some of the notations are mine, and so are the many errors likely to
be found in the first versions of this document.

Summary of the Query Converter

The program is started in a Unix shell with the command
gconv

This opens a qconv shell, with the following commands available:

http://www.cse.chalmers.se/~aarne/
http://www.cse.chalmers.se/edu/year/2015/course/TDA357/VT2015/
http://www.grammaticalframework.org/~aarne/query-converter/
http://catalogue.pearsoned.co.uk/educator/product/Database-Systems-The-Complete-Book-International-Version/9780131354289.page
http://catalogue.pearsoned.co.uk/educator/product/Database-Systems-The-Complete-Book-International-Version/9780131354289.page

<SQL> run sql command
a <SQL> show algebra for sql query
i <File> execute SQL commands

d <File> read and show design (E-R, schemas, English)
f <File> read relation, analyse dependencies and keys
n <File> read relation, normalize to BCNF and 4NF
x <XPath> run xpath query (on the current database)
X print database in xml
h help
q quit
Introduction

Following the tradition of the Chalmers database course, very similar to the standard textbook
by Garcia-Molina et al., the material is presented in the following order:

1. database design:
e Entity-Relationship models
e schemas
e functional dependencies and other constraints
e normal forms

2. database construction and queries:
o relational algebra
o SQL
o query compilation

3. data representations:
o XML

Modelling vs. design vs. coding

Computer programming is sometimes referred to as coding, which means writing code in
some programming language. In the case of databases, this usually means writing SQL.
However, seeing programming simply as coding ignores some important work that has to be
done before coding: modelling and design. We could say

programming = modelling + design + coding

which conceptually proceeds in this order. In practice, of course, the actual workflow may look
different. For instance,

e Modelling and design have already been done by others, and the programmer just has
to code.

e Modelling, design, and coding are made in parallel, so that we get into coding early
with only a small part of the modelling and design done.

e The programming language used for coding is also used as a tool for modelling and
design.

All of these can be valid reasons to emphasize coding and talk less about modelling and
design. However, awareness of the three components is useful, because it helps us
understand when flaws in the final code are actually flaws in the modelling or the design. This
is particularly useful in the case of SQL, which does not express all the distinctions that can
be made at the modelling phase.

How can we then distinguish these three components of programming (or, using a more
general term, software development)? We should look at what each of the phases operates
on: what its input and output are. Briefly:

e Modelling is modelling of reality. It takes reality as input and yields a model as
output. The model specifies the structure of a piece of reality, in a precise way.

e Design is design of software. It takes a model as input and yields a software
blueprint as output. This blueprint, unlike the model itself, takes into account the
specific features of the programming language to be used in coding.

e Coding is the implementation of the software blueprint. It takes the design as input
and yields program code as output.

Notice that each of these phases can be made mathematically precise and formal. Hence
they differ from the original starting point, the reality itself. Modelling is hence essentially
formalization of the informal reality. Formalization is a necessary step to have any task done
by a computer. But it can also be useful for humans, since it increases our understanding of
reality by forcing us to be more precise than usual.

Languages and formalisms

In database programming, the following formats (plus many others) are used for the different
phases:

e Modelling: natural language, Entity-Relationship diagrams (E-R diagrams)
e Design: database schemas
e Coding: SQL, XML

The following transitions are commonly done between the formats:

reality -> natural language: needs knowledge and intelligence

natural language -> E-R diagram: guided by heuristic rules

E-R diagram -> database schema: mechanical

(intermediate step:) database schemas can be improved by dependency analysis
database schema -> SQL schema: needs some decisions e.g. types

database schema -> XML: needs some decisions

We cannot say much about the modelling of reality in natural language. It is the skill that
needs both knowledge of the domain and writing skills. Its outcome can also be that the piece
of reality is not suitable for modelling with a database, but some other model can be better,
e.g. a numerical model or a model with functions rather than static data. We take it for granted
that, when starting to build a database, we are dealing with data that works with a database.

Natural language and E-R diagrams

Even though we cannot define how to transform reality into natural language, we can give
some hints about how to use natural language in a way that makes the next phase, E-R
models, easier. These hints are inspired by the creator of E-R models himself, Peter Chen,
but they generalize his original presentation. The following table gives a conversion between
a set of natural language sentences and the corresponding E-R model, which is shown
graphically under the table:

Natural language E-R model notation in qconv
A course has a code and a name. ENTITY Course _code name
A teacher has a name and a title. ENTITY Teacher _name title

A taught course of a course has a period. WEAK ENTITY TaughtCourse Course IsInstanceOf _period

A taught course can be taught by a teacher. RELATIONSHIP IsTaughtBy TaughtCourse -- Teacher

A limited course is a course that has a ISA LimitedCourse Course limitedNumberOfStudent
limited number of students.

Teacher

>N
<t >

Course

/ ‘@ TaughtCourse

The natural language descriptions on the left are mechanically generated from the E-R model
component descriptions on the right. The graphical diagram is generated from the same
descriptions. The descriptions thus have a formal notation, which was created ad hoc for the
Query Converter (qconv) tool, and which supports the generation of both natural language
and of graphical E-R diagrams.

To summarize: of the above components, only the “E-R model notation in gconv” was written
by hand. The natural language and the diagram were produced by qconv.

The graphical diagram was produced by generating code for the Graphviz program. Graphviz
is a very powerful general-purpose tool for drawing graphs, and by no means specialized on
E-R diagrams. This explains why the layout is not what you might see in special-purpose
tools. But it can certainly be improved by post-editing the Graphviz code generated by qconv.

The natural language generation is based on the choice of entity and attribute names. If they
fall under suitable syntactic categories, the language comes out quite nice. As a rule of
thumb:

e an entity is a common noun (CN), e.g. course
e an attribute is a CN that fits in the form “the CN of X", e.g. name as in the name of X

e a weak entity is a CN modified by an adjectival phrase (AP), e.g. taught course, but it
could also have the form “CN of a CN”, e.qg. instance of a course

e a subentity (ISA) is also a modified CN, e.g. limited course, but it could also have the
form of a compound CN, e.g. research course

e arelationship is a transitive verb (TV), e.g. teaches, but more generally it can be any
two-place predicate P that fits in the sentence “X P Y”, e.g. is taught by.

The most difficult thing might be to decide between weak entities and subentities, because
both can be expressed by modified nouns. Trying to test with the alternative forms may help:
if “CN of a CN” works, then weak entity could be the right choice.

Now, could we start with a natural language description, parse it into an E-R description, and
generate the diagram? This is certainly possible, but requires that the natural language
follows a set of strict rules so that it can be parsed unambiguously. Such a set of rules is
known as a controlled natural language (CNL). It is a long-term plan in the Query Converter
to define a CNL for data modelling.

But even before we have the CNL, the above rules of thumb can be used as an intermediate
step when creating E-R diagrams. The workflow could be as follows:

obtain a messy domain description (from a manager, a customer, or your teacher)
reformulate it by using more precise natural language (CNL)

from this, translate (almost mechanically) to an E-R description

let gconv generate the E-R diagram from the description

N

Of course, some people prefer working directly on graphical E-R tools where you see what
you will get, and keep the relation to natural language completely informal. But actually
creating an E-R description has another advantage: it can produce database schemas as
well!

From E-R diagrams to database schemas

From the same notation as the natural language and the E-R diagram, qconv can also
produce a database schema in a conventional notation. Here is the schema produced from
the description above:

Course (_code, name)

Teacher (_name, title)

TaughtCourse (_period, code)
code -> Course.code

IsTaughtBy (taughtCoursePeriod, teacherName)
taughtCoursePeriod -> TaughtCourse.period
teacherName -> Teacher.name

LimitedCourse (code,limitedNumberOfStudents)
code -> Course.code

The algorithm that qconv follows is based on a document by Jonas Almstrém Duregard:
http://www.cse.chalmers.se/edu/year/2015/course/TDA357/VT2015/TranslationV2.pdf

The E-R notation of qconv

If you want to try out the generation of E-R diagrams, natural language, and schemas, you of
course need to know the notation that qconv uses for E-R descriptions. Here come the
grammar:

Element ::=
"ENTITY" Entity Attribute*
| "WEAK" "ENTITY" Entity StrongEntity Relationship Attribute*
| "ISA" Entity SuperEntity Attribute*
| "RELATIONSHIP" Relationship Entity Arrow Entity Attributex*

ArrOW s i= N__ | WS | _) ”
Attribute ::= Ident | “ "Ident
Entity, StrongEntity, SuperEntity, Relationship ::= Ident

The notation is not (yet) quite complete for all E-R diagrams:

e It only supports two-place relationships. This may be OK because one can encode all
relationships as two-place ones.

e |t doesn’t support weak relationships. They may actually be redundant, because a
“‘weak relationship” just means the relationship between a week entity and the
corresponding strong entity and is therefore determined by the context.

e The many/one arrows are only definable in one direction. This must be fixed.

How do you use the notation in gconv? You write it in a text file, such as edu.txt, and use the
gconv command d

d edu.txt

http://www.cse.chalmers.se/edu/year/2015/course/TDA357/VT2015/TranslationV2.pdf

In order to see the nice graphical diagram, you need to have the graphviz tool installed. Use
your OS package manager (e.g. brew on Mac) to obtain it. The display is moreover now set to
work on Mac OS and uses the “open” command. On Linux and Windows, you must manually
open the generated file er-tmp.png by using that system’s viewer command. This must be
solved later as a configuration option.

For the curious: the source code for model conversions is in the file

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Design.hs

The central datatype is ERElement, starting from line 87. All conversions go via this type, and
may lose some information preserved in it.

Functional dependencies and independencies

A part of the domain modelling is to describe the dependencies among the data. For instance,

e that teacher depends on course and study period - a functional dependency
e that teachers and rooms are independent of each other - an independency,
standardly called multivalued dependency

The standard material gives many explanations and examples, but concise mathematical
definitions can also be useful. Thus:

Definition. A tuple has the form {A, = v,,..., A, = v}, where A,,...,A, are attributes and
V,,...,V, are their values.

Definition. The signature of the tuple, S, is the set of all its attributes {A,,...,A}

If t is a tuple of signature S, the projection t.A, computes to the value v,.

If X is a set of attributes {B,,...,.B, .} & S and tis a tuple with signature S, we write
t.X for the sequence of values (t.B,,...t.B).

Definition. A relation R of signature S is a set of tuples with signature S.

Example. Consider the following table.

country capital population currency
Sweden Stockholm 9 SEK
Finland Helsinki 5 EUR
Estonia Tallinn 2 EUR

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Design.hs

e It has four attributes: country, capital, population, currency. The attributes are listed on
the first line of the table, whereas the other lines each represent a tuple.
e The first tuple is
{country = Sweden, capital = Stockholm, population = 9, currency = SEK}.
If we call this tuple t, then t.country = Sweden.
The signature is the set {country, capital, population, currency}.
The whole relation is the set
{
{country = Sweden, capital = Stockholm, population = 9, currency = SEK},
{country = Finland, capital = Helsinki, population = 5, currency = EUR},
{country = Estonia, capital = Tallinn, population = 2, currency = EUR}

}

e [ftis the tuple with Sweden, as above, then
t.{currency,population} = {currency = SEK, population = 9}

Definition. Assume X is a set of attributes and A an attribute, all belonging to a signature S.
Then A is functionally dependent on X in a relation R, written X -> A, if

for all tuples t,u in R, if .t X = u.X then t A = u.A
If YES, we write X -> Y to mean that X -> A for every Ain Y.

Example. In the above table, even if extended with all countries of the world, we expect to get
the following functional dependencies:

e country -> capital population currency

e capital -> country population currency
If we only have the above data, then functional dependencies hold between all pairs of
attributes, except

e currency -=> A
for any attribute A, because the currency EUR does not uniquely determine any of them.

Definition. Let X,Y,Z be disjoint subsets of a signature S suchthat S=X U Y U Z. ThenY
is functionally independent of Z in R, written X ->>Y | Z, if

for all tuples t,u in R,

if tX=uX
then there is a tuple v in R such that
[11 v.X=tX
[2] v.Y=tY

[8] v.Z=uz

We write X ->>Y tomean X->>Y | (S-X-Y).

Example. In the above table, we don’t have enough data to prove any independencies. But
thinking about the domain of countries, we could at least expect the following to hold:

e country ->> population

e country ->> currency
In other words, that the population and the currency of a country are independent of each
other (and of the capital).

To see the power of these definitions, here is how easily you can prove a slightly surprising
result saying that dependence implies independence:

Theorem. If X -> Y then X ->> Y.

Proof.

Assume that t,u are tuples in R such that t.X = u.X.
We select v = u.

This is a good choice, because

[1] uX=t.X by assumption

[2] u.Y =t.Y by the functional dependency X ->Y
[3] u.Z=u.Z by reflexivity of identity.

Closures, keys, and superkeys

For the sake of analysis, a relation is charaterized by its signature S, its functional
dependencies FD, and its multivalued dependencies MVD. We start with things where we
don’t need MVD.

Assume thus a signature (i.e. set of attributes) S and a set FD of functional dependencies.

Definition. An attribute A follows from a set of attributes Y, if there is an FD X -> A such that
XEY.

Definition. The closure of a set of attributes X € S under a set FD of functional
dependencies, denoted X+, is the set of those attributes that follow from X.

Algorithm. If X € S, then the closure X+, can be computed in the following way:

1. Start with X+ =X
2. SetNew={A|A € S, not A € X+, A follows from X+}
3. If New = & return X+, else set X+ = X+ U New and go to 1

Definition. The closure of a set FD of functional dependencies, denoted by FD+, is defined
as follows:

FD+={X->A| X € P(S), A € X+,notA € X}
The last condition excludes trivial functional dependencies, where A € X.

Definition. A set of attributes X & S of attributes is a superkey if S & X+.

Example. In the above example, all sets that include either country or capital are superkeys:
e {country},{country,capital},{country,currency},{country,population,currency} etc

Definition. A set of attributes X & S of attributes is a key if

- Xis a superkey
- no proper subset of X is a superkey

Example. Only {country} and {capital} are keys in the above example.

Definition (Boyce-Codd Normal Form). A functional dependency X -> A violates BCNF if X
is not a superkey and the dependency is not trivial. A relation is in BCNF if it has no BCNF
violations.

Note. Any trivial dependency A -> A always holds even if A is not a superkey.

Definition. An attribute A is prime if A belongs to some key.

Example. The prime attributes in the above example are country and capital.

Definition (Third Normal Form). A functional dependency X -> A violates 3NF if X is not a
superkey and A is not prime, and the dependency is not trivial. A relation is in 3NF if it has no

3NF violations.

Note. Any violation X -> A of 3NF is also a violation of BCNF, because it says that X is not a
superkey. Hence, any relation that is in BCNF is also in 3NF.

Definition. An independence X ->> Y is trivial if Y € Xor XU Y =S.

Definition (Fourth Normal Form). An indepence X ->> Y violates 4NF if X is not a superkey
and the independence is not trivial.

Note. If X -> A violates BNCF, then it also violates 4NF, because
1. itis an independence by the theorem above

2. itis not trivial because
a. if {A} € X, then X -> Ais a trivial FD and cannot violate BCNF
b. if XU {A) =S then X is a superkey and X -> A cannot violate BCNF

Example. The above table of countries is in 4NF and hence also in BCNF and 3NF. This is
because its only independences are also FDs, and all its FDs have superkeys on the left hand
side. However, if we add one more column that states the equivalent of the currency in US
dollars, we get a more interesting table:

country capital population currency inUSD
Sweden Stockholm 9 SEK 0.12
Finland Helsinki 5 EUR 1.06
Estonia Tallinn 2 EUR 1.06

The value in USD is determined by the currency and does not depend on the other attributes.
Hence we have the functional dependency

currency -> inUSD

But, since the currency does not determine the other attributes, {currency} is not a superkey.
Hence the relation has a BCNF violation. In common sense terms, this corresponds to a
problem in the table: the value of EUR in USD is repeated for each country that has EUR as
currency, which is of course redundant.

Algorithm. Consider a relation R(S) with a set FD of functional dependencies. R can be
brought to BCNF by the following steps:
1. a. If R has no BCNF violations, return R
b. If R has a violating functional dependency X -> A, decompose R to two relations
- R1(X’A)
- Ry(S-{A})
2. Apply step 1to R, and R,

Optimization. One can combine several violations with the same left-hand-side X to produce
fewer tables. Then the violation X ->Y decomposes to R,(X,Y) and R,(S-Y). Or even further,
to R,(X+) and R,(S - (X+) U X).

Example. The table above has the violation currency -> inUSD. The decomposition yields two
relations, which don’t have any violations left and are hence in BCNF:

R,(currency,inUSD)

currency inUSD
SEK 0.12
EUR 1.06

R,(country,capital,population,currency)

country capital population currency
Sweden Stockholm | 9 SEK
Finland Helsinki 5 EUR
Estonia Tallinn 2 EUR

Relation analysis in the Query Converter

The qconv command £ reads a relation from a file and prints out relation info: the closure of
functional dependencies, superkeys, keys, and normal form violations. The command n
reads a relation from the same file format and prints out a decomposition in BCNF.

The format of these files is shown by
https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/fd-ex.txt

with the following contents:

B CD
-> B
-> C
-> C

D -> A

w o oo

Processing this file with the gconv command
f fd-ex.txt

produces the following output:

Attributes:
A B CD

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/fd-ex.txt

Functional dependencies:

A -> B
B ->C
A -> C
BD->A

Derived functional dependencies:

B D->2C
BCD->A
A D->B

A D ->C

A C ->B
ACD->B
A B ->C

A BD->2C
Superkeys:
B D

B CD

A D

A CD

A B D

A B CD
Keys:

B D

A D

3NF violations:

B ->C
A -> C
A B ->C

BCNF violations:
B ->C

A -> B

A -> C

A C->B

A B -> C

ANF violations:

B ->> C
A ->> B
A ->> C
A C ->>B

A B ->>C

The gqconv command n reads a relation from a file and shows its decomposition to BCNF and
4NF. If there are no MVD’s other than FD’s, the 4NF is the same as the BCNF and is not
shown separately. Here is an example with the same file as before:

n fd-ex.txt
produces the following output:
BCNF decomposition:

1. Attributes:

B C

Functional dependencies:
B ->C

2. Attributes:

A B

Functional dependencies:
A -> B

3. Attributes:

A D

Functional dependencies:
none

The Haskell code in

https://qgithub.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Fundep.hs

is a direct rendering of the mathematical definitions. There is a lot of room for optimizations,
but as long as the number of attributes is within the usual limits of textbook exercises, the
naive algorithms work perfectly well.

TODO: Add 3NF decomposition; improve 4NF decomposition (can be very slow and even
incomplete); add FD’s and apply normal forms to the schemas produced by the E-R design
command.

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Fundep.hs

Relational algebra, SQL, and query compilation

Relational algebra interpreted in set theory

The mathematical model of relational databases is, not surprisingly, relations. Relations are
sets of tuples, just like in the previous definitions of dependencies. In those definitions, the
tuples were shown as labelled records, where each value is shown together with the
attribute it corresponds to. However, in this chapter we will use unlabelled tuples, which are
like records with the labels (=attributes) omitted. This data structure is more economic in
practice, because we don’t repeat storing the attributes for each tuple. It is also more in the
tradition of mathematics, because unlabelled tuples correspond directly to vectors, and
relations to subsets of cartesian products.

To access the value of a certain attribute in a labelled record, with a projection t.a, we search
for the attribute a in t. To access a value in an unlabelled tuple, we use its position instead:
we write tfi] where i is an integer that is shorter than or equal to the length of the tuple. The
“signature” of an unlabelled relation is just the length of its tuples.

If we encode labelled records as unlabelled tuples, as is done in relational databases, we
have to provide an index, which is a function that maps attributes to positions. When we
convert a set of labelled records into a set of unlabelled tuples, we only need to store the
attributes ones, namely in the index.

Let us proceed to the definitions. First out are the relations themselves, also known as tables.

Definition. A relation T is a subset of V x V x ... x V. The signature of the relation is the
whole setV xV x ... xV,

Note. The signature could be coded simply as the number n of V’s. However, more generally
the signature is a product of distinct types, V, x V, x ... x V_, and this is what a typed
language like SQL actually assumes. However, we can (mostly) ignore the distinctions
between value types when discussing relational algebra.

Definition. A tuple of T is a sequence t = <v,,v,,...,v,> € T where eachv, € V.
Definition. An attribute set A for a relation T is a set of identifiers (defined e.g. as strings).

Definition. An index for A is a mappingi € A ->{1,...,n}

Definition. The projection from a tuple t with an attribute a can be written t.a, which means

tfi(@)].

Now that we have defined the basic concepts of tables, we can proceed to defining the
operators of relational algebra. Technically, these definitions are just one interpretation of
relational algebra, which is an abstract structure. But this is, for the purposes of database, the
natural interpretation.

Definition. If T is a relation with attribute set A and B = {b,,....b, } & A, then the projection

T,(T) is a relation with the attribute set B, defined

Te(T) = {<t.b,,...,t.b,> | t E T}

Definition. If T is a relation of signature S and C : S -> Bool, then the selection 6.(T) is a
relation with the same attribute set, defined

6. (T)={t|t € T, C(t) = True}

Definition. If T and U are relations with the same signature and attribute set, then the union
T U U is arelation, defined

TUU={t|tE Tort € U}

Definition. If T and U are relations with the same signature and attribute set, then the
intersection T [U is a relation, defined

TNU={t|t E Tandt € U}

Definition. If T and U are relations with the same signature and attribute set, then the
difference T - U is a relation, defined

T-U={t|t € Tandnot (t € U)}

Definition. If T and U are relations of signatures R and S, respectively, then the cartesian
product T x U is a relation, defined

TxU={t+tu|[t E T,u € U}

where the + notation for flattening is defined
VeV > H<W W > = <V, LV W WS

Note. The definitions of signature and attribute set for T x U are a bit tricky, because of the
flattening of tuples. In the ordinary cartesian product in mathematics, an element would be

<LV, V> <SW L W >

that is, a tuple of two tuples. This avoids the trouble of creating deep hierarchic tuples. But it
creates the problems of also defining the signature and the attribute set. The signature is
actually easy: just use the flattened product R x S of the two signatures. But the attribute set
is trickier: since T and U can have partly the same attributes, such attributes become
ambiguous.

The normal way to avoid this is by renaming: either rename those attributes of U that also
appear in T (more “user-friendly”) or always routinely rename all attributes by qualifying
them. For instance, all attributes a of T become 1a and attributes of U become 2a. Instead of
1 and 2, one might use the names ot T and U. But since is not necessarily the case that all
relations have names, the latter alternative is not always available. The next definition
introduces explicit renaming, which we will assume instead of such automatic tricks.

Definition. Let T be a relation with signature S and index map A. If B is also an index map for
the signature S, then the renaming Q4(T) is a relation, defined

0s(T) =T
That is, exactly the same set of tuples. But now with the index map B instead of A.

Definition. If T and U are relations of signatures R and S, respectively, and C : R x S -> Bool,
then the theta join T X U is a relation, defined

TX . U={t+tu|t € T,u € U, C(t,u)=True}

Note. The theta join is actually just a selection from the cartesian product, and could be
equivalently defined

T X, U= 6T x U)

The relational algebra notation is hence a bit misleading, as it suggests that theta join is a
special case of the next operator, which turns out to be much more complex.

Definition. If T and U are relations with attribute sets A and B, respectively, then the natural
join T X U is a relation, defined

T U={t+<tc,.tc> |t E T,u €E U, (Va € ANB)(t.a=u.a)}

where {c,,...,c,} = B-A.

Note. An equivalent definition can be given by using projection on top of selection from a
cartesian product,

Thus we can conclude: natural join is a special case of theta join, which is a special case of
the cartesian product.

Definition. Let T be a relation with attribute set A, X = {c,,...c} & A, and G = {g,,...,g,,} a set
of aggregation functions g, i.e. functions that assign a value to a multiset of values collected
from all projections with a given attribute a from a subset of T:

g € P(T)->V.

Then gamma_X,G(T) is a relation, defined

VxolT) =
{<t.c1,...tck, g,(U), g, (U)>|v E 6(1‘[X(T)), uE{t|tE T, (Va € X)(ta=v.a)}

where O(T) is the set of distinct values from the multiset T, and just T if T is a set.
Todo. Outer joins, sorting, distinct. The status of these relational algebra is unclear, because
outer joins use NULL values, sorting is meaningless on sets and multisets, and distinct is

meaningless for sets.

Todo. Proper characterization of sets vs. multisets. The above definitions work for both.

Query compilation: from SQL to relational algebra
Executing SQL queries can be neatly done via relational algebra:

1. translate the query to an algebraic formula
2. optimize the algebraic formula
3. compute the set corresponding to the algebraic formula

The main advantages of this are:

e Relational algebra is a much simpler language than SQL, which reduces the work
done at step (3).
e Relational algebra formulas obey general mathematical laws, which make (2) possible.

In a sense, relational algebra is the “machine language” of SQL, and query execution is
similar to what for instance the execution of Java code does: first translate Java to JVM (Java
Virtual Machine), then compute with JVM.

This is of course a slightly idealized picture, presented in textbooks and research papers. But
the way queries are executed in the Query Converter (qconv) is exactly the steps (1) and (3);
optimization (2) is still future work.

Before we can translate an SQL query to an algebraic formula, we must parse it. This means
building an abstract syntax tree (AST). The AST is built by using a grammar, and qconv has

its own SQL grammar, defined in

https://github.com/GrammaticalFramework/af-contrib/blob/master/query-converter/MinSQL .bnf

The AST of SQL is then converted to the AST of a relational algebra formula, and there is a
grammar for these formulas as well:

https://github.com/GrammaticalFramework/agf-contrib/blob/master/query-converter/RelAlgebra.bnf

Notice that the algebra grammar is written in LaTeX type-setting code, which means that it
can be converted to nice layout with greek letters, mathematical symbols, and subscripts. The
grammar can also parse relational algebra expressions written in LaTeX, but this facility is not
used in qconv yet; we only use the printing of formulas from ASTs, and, more importantly, the
interpretation of formulas to sets.

Notice also that the relational algebra grammar has 70 lines whereas SQL (even if not yet
complete up to any standard) has 183 lines. This shows clearly that SQL is a more complex
language.

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/MinSQL.bnf
https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/RelAlgebra.bnf

The SQL-to-Algebra translation function is defined in

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Converter.hs

which mostly works by one-line conversion rules, except for the GROUP-related SQL
constructs, which come out as complex combinations of), 6, and ;. One-line conversion
rules that only operate on the immediate subtrees of ASTs are called compositional, and it is

obvious from the Converter module that the whole SELECT structure (starting from line 90) is
not compositional, but this is mainly just because of the presence of aggregation. The other
table expressions (start line 138) are compositional one-liners again.
In a DBMS system, the relational algebra translation is just a preparation for the query
execution itself. However, gconv also provides the bonus of query translation. The command
“a” applied to an SQL query, for instance

a SELECT * FROM Courses WHERE teacher LIKE “%e%” ;
renders the algebra expression in LaTeX, which converts it into a pdf file.
Note. A detail to notice is that while gconv is case-insensitive with the SQL keywords, it is
case-sensitive with identifiers, such as table and attribute names. This behaviour may be

changed to meet the usual standard.

Note. The query translator is incomplete, with many features of SQL missing. These come out
as errors saying “not yet” and showing the internal AST.

Query execution: from relational algebra to tables
Due to the nice design of relational algebra, this step is very close to compositional:

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Algebra.hs

The conversion works in an environment, which maps names of tables into tables. This
environment is changed every time qconv receives an SQL command other than a query:
CREATE TABLE, INSERT, etc. The gconv program starts with an empty environment and
builds it up during a session. The SQL commands can be imported from a file, for instance,

i course.sqgl

using the file

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Converter.hs
https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Algebra.hs

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/course.sql

And of course, SQL commands can be just given on the command line, for instance,

SELECT * FROM Courses WHERE teacher LIKE “%e%” ;
INSERT INTO Teachers VALUES ('Abel', 'associate professor') ;

The final back-end of query execution are the set operations themselves. They are defined in
the Haskell module

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Relation.hs

which uses the following datatype to represent tables:

data Table = Table {

tname :: Maybe Id, -— name, if given

tdata [[Value]], -— tuples, all of same length
tindex :: Map Id (Typ,Int), -- from labels to types and indexes
tlabels :: [Id] -- labels in presentation order

}

It should be noticed that we use neither sets nor multisets but lists. But this is OK as long as
we don’t exploit the order of elements in the rest of the code.

From relational database to XML

The last thing added to gqconv is a rudimentary translation to XML,

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/ToXML.hs

and a part of the XPath language,

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/XPath.bnf

with an even more partial interpreter,

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/XPath.hs

This only covers the part of XML that results as a direct translation from a relational database
(that is, from tables as defined in the previous section).

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/course.sql
https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/Relation.hs
https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/ToXML.hs
https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/XPath.bnf
https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-converter/XPath.hs

The related gconv functionalities are two: first, you can show the current database as an XML
dump, which consists of a DTD and a valid document. The command is simply

Second, you can make an XPath query on the current database, with a command like
x /QConvData/Teachers

However, the latter functionality is just under construction and does not yet contain attributes,
tests, axes, etc.

