
A cloud-based editor for multilingual grammars

Anonymous

Abstract

Writing deep linguistic grammars has
been considered a highly specialized skill,
requiring the use of tools with steep learn-
ing curves and complex installation proce-
dures. As the use of statistical methods
has increased, new generations of compu-
tational linguists are getting less and less
prepared for grammar writing tasks. In
an aim to provide a better learning expe-
rience for grammar writers, we present a
grammar engineering tool that resides in
the cloud. It has been used in several tu-
torial courses and self-studies, and it al-
lows absolute beginners to write their first
grammars and parse examples in 10 min-
utes. The cloud-based grammar engineer-
ing tool is built on top of GF (Grammatical
Framework), a grammar formalism that
has an explicit tecto/phenogrammar dis-
tinction, is based on ideas from type theory
and functional programming and comes
equipped with a grammar library support-
ing 30 languages.

1 Introduction

Writing deep linguistic grammars has been con-
sidered a highly specialized skill. As the use of
statistical methods has increased, new generations
of computational linguists are getting less and less
prepared for grammar writing tasks. A part of
the problem is the steep learning curve in tools:
systems like LKB (Copestake, 2002) and XLE
(Xerox Linguistic Environment) are designed for
professional linguists. Getting started with their
use requires substantial training, and installing the
tools requires large and unfamiliar software pack-
ages, in addition to a firm knowledge of operating
system command-line tools.

GF (Ranta, 2004) is a more recent grammar for-
malism, born so to say in the middle of the statis-

tical era. GF shares the ambition of the “classi-
cal” formalisms to enable deep linguistic descrip-
tions, which it wants to support with some new
ideas: type theory, functional programming, and
an explicit tecto/phenogrammar distinction. How-
ever, GF was also meant to be a formalism for
“ordinary” programmers without linguistic train-
ing. Thus the majority of the currently 30 lan-
guages included in the GF Resource Grammar Li-
brary (Ranta, 2009b) are in fact written by stu-
dents and scholars in computer science, who find
the GF style of programming familiar from other
contexts, in particular compiler construction (Ap-
pel, 1998).

However, the GF approach has a “nerdy”
flavour to it, in particular requiring coping with
command line tools, text editors, and Haskell li-
braries. Some programmers are helped by the
Eclipse plug-in (Camilleri, 2012), but installing
both GF and Eclipse on a personal computer can
be a daunting task for many.

The present paper describes an attempt to elim-
inate all trouble with software installation from
linguistic grammar writing. We describe a gram-
mar engineering tool that resides in the cloud and
can be used in ordinary web browsers. The tool
supports writing grammars in the cloud, compil-
ing them to executable parsers and translation sys-
tems, and finally running and testing them in the
cloud. Thus an entire grammar project can be
written and used without installing any specific
software. The project can also be published and
shared, so that many users can work on the same
grammars (although not simultaneously yet in the
current version).

The cloud-based GF editor has been used on
several tutorial courses and self-studies. It enables
absolute beginners to write their first grammar and
parse examples in 10 minutes. It scales up to most
of the grammars described in the GF book(Ranta,
2011), although it has some limitations, in partic-



ular a simplified module system, which makes it
unpractical for larger tasks. But student who have
got the first experience of grammar writing with-
out the overhead of installation troubles, are more
likely to proceed to the full-scale systems when
they feel the need for it.

In section 2 we describes the cloud-based gram-
mar editor introduced above. In section 3 we de-
scribe a new technique for example-based gram-
mar writing that we are adding support for in the
cloud-based editor. This makes it possible for a
user with minimal knowledge of GF grammar con-
struction to add new languages to a multilingual
grammar by translating automatically generated
examples in one of the existing languages to the
new language. In sections 4 and 5 we describe re-
lated and future work.

2 The GF online grammar editor

As the name suggests, the GF online editor for
simple multilingual grammars is available online1,
so all that is needed to use the editor is a device
with a reasonably modern web browser. Even An-
droid and iOS devices can be used. To help novice
grammar authors, the editor provides some guid-
ance, e.g. by showing a skeleton grammar file and
hinting how the parts should be filled in. When a
new part is added to the grammar, it is immedi-
ately checked for errors.

Figure 1 illustrates what the editor looks like.
Editing operations are accessed by clicking on
editing symbols embedded in the grammar dis-
play: +, x and % to add, delete and edit items.
These are revealed when hovering over items. On
touch devices, hovering is in some cases simulated
by tapping, but there is also a button to ”Enable
editing on touch devices” that reveals all editing
symbols.

The current version of the editor supports a
small but useful subset of the GF grammar nota-
tion. Grammars consist of one module for the ab-
stract syntax (capturing the meanings of interest),
and a number of modules for concrete syntaxes
(mapping the meanings of the abstract syntax to
concrete representations in the natural (or formal)
languages relevant to the application). Proper er-
ror checking is done on the fly for abstract syntax,
but not (yet) for concrete syntax.

Grammars can import modules from the Re-
source Grammar Library (Ranta, 2009b), freeing

1We omit the link, to preserve the illusion of anonymity.

the grammar author from dealing directly with the
linguistic complexities of natural languages, such
as inflection and agreement.

2.1 Abstract syntax
The supported abstract syntax corresponds to
context-free grammars. The definition of an ab-
stract syntax consists of

• a list of category names, C1 ; ... ; Cn,
• a list of functions, Funi : Ci1 → ...→ Cin

• and the designation of a start category.

Available editing operations:

• Categories can be added, removed and re-
named. When renaming a category, occur-
rences of it in function types will be updated
accordingly.
• Functions can be added, removed and edited.

Concrete syntaxes are updated to reflect
changes.
• Functions can be reordered using drag-and-

drop.

The editor checks the abstract syntax for correct-
ness as it is entered. Syntactically incorrect func-
tion definitions are rejected. Semantic errors such
as duplicated definitions or references to unde-
fined categories, are highlighted. This is enough
to ensure that a grammar that is accepted by the
editor will also be accepted by the GF grammar
compiler.

2.2 Concrete syntax
When adding a new concrete syntax to a gram-
mar, the editor shows a list of supported natural
languages and the user just picks one. See Fig-
ure 2. The name of the new module is filled in
automatically based on naming conventions, e.g.
FoodsEng if abstract syntax is called Foods and
we are adding a translation to English. The body
of the new concrete syntax can be created by copy-
ing and modifying an existing concrete syntax, or
by starting with a skeleton based on the abstract
syntax.

The key components of a concrete syntax are
linearization types for the categories and lin-
earizations for the functions in the abstract syntax.
The editor automatically provides correct LHSs
for these, since they are determined by the abstract
syntax, while the RHSs can be edited freely.

The editor allows a concrete syntax to open
some of the relevant Resource Grammar Library



Figure 1: GF online editor for simple multilingual grammars

Figure 2: Adding a new concrete syntax

Figure 3: Opening modules from the Resource
Grammar Library

Figure 4: Testing grammars in the Minibar

modules. A list of suitable library modules is
shown, e.g., SyntaxEng and LexiconEng in
a concrete syntax for English, so the user does not
need to know their names by heart. See Figure 3.

The editor also supports definitions of param-
eter types and auxiliary operations, but usually it
is enough to rely on the types and operations pro-
vided by the Resource Grammar Library.

The editor checks all user editable parts of the
concrete syntax for syntactic correctness as they
are entered. Duplicated definitions of parameter
types or operations are highlighted. Checks for
other semantic errors are delayed until the gram-
mar is compiled.

2.3 Compiling and testing grammars

When pressing the Compile button, the grammar
will be uploaded to the server and compiled with
GF, and any errors not detected by the editor will



Figure 5: Testing grammars in the Translation
Quiz

be reported. Error-free grammars can be tested
by clicking on the the Minibar button, which is
a web-based translation tool, and the Quiz button,
which is a web-based language training tool (Abo-
lahrar, 2011). See Figures 4 and 5.

2.4 Grammars in the cloud

While grammars created in the editor are stored
locally in the device by the browser, it is also pos-
sible to store grammars in the cloud. Each device
is initially assigned to its own unique cloud and
has its own set of grammars, but it is also possible
to merge clouds and share a common set of gram-
mars between multiple devices.

Users can also choose to “publish” a grammar.
A copy of the grammar is then added to a list of
grammars visible to all users of the cloud-based
grammar editor.

3 Example-based grammar writing

The example-based grammar writing mechanism
is aimed at helping users who build concrete gram-
mars using the resource grammar for the given
language. The resource library provides over
300 functions for building grammatical constructs
such as predication, complementation, etc (Ranta,
2009a). Using the resource library is advanta-
geous on one hand, because it alleviates the dif-
ficulty of reimplementing language-specific fea-
tures every time when writing a grammar for the
language, but on the other hand it assumes a work-

ing knowledge of the resource library, which could
lead to a larger overall effort. We aim at freeing
users from this burden by making it possible for
them to write function linearizations by giving ex-
ample of their usage. In the current scenario, we
assume that a large lexicon covering the words that
could be used in the grammar is available already.
We will use the resource grammar enhanced with
the larger dictionary for parsing the examples from
the user in order to infer the right linearization
form.

Since the functions from the grammar could
take arguments, in order to give an example for
the usage of a certain function, we need to have
one example for each of its arguments in order to
get more precise information about the behavior
of the function. For this reason, only the function
for which all arguments can be found among the
already implemented functions, are highlighted as
available for the example-based method.

In order to clarify the usage of a certain func-
tion, its context is made explicit by embedding
the function into a tree returning the start category,
like in Figure 6 where ”this fish” is used to make
phrases like ”this fish is delicious”. Since certain
parts of the phrase are not relevant for the task,
they are underspecified by using ”?” instead. In
case that the grammar returns more than one parse
tree, the results are ranked in the descending or-
der of their probability (defined in the correspond-
ing resource grammar or defined by the user), and
the first tree from which the arguments can be ab-
stracted is chosen as the linearization tree.

The technique has been used as an experimental
way for developing a tourist phrasebook grammar
in GF for 4 languages (Ranta et al., 2011), but no
tool support was available at that time. The pos-
itive results obtained were a strong motivation to
make the method available to end users as part of
a GF grammar writing system.

The example-based grammar writing system is
still work in progress and the basic prototype cur-
rently available will be further developed and im-
proved. It is possible to use it already for 5 lan-
guages where a large dictionary is available in GF
(English, Swedish, Finnish, Bulgarian, French).

4 Related work

GF is a grammar formalism comparable in expres-
sive power to HPSG (Pollard and Sag, 1994) and
LFG (Bresnan, 1982), but different due to the dis-



Figure 6: Example-based grammar construction

tinction between the abstract and concrete dimen-
sion of a grammar, along with the possibility to
share the abstract syntax which makes translation
between any pair of languages possible. In the
same way, the GF resource library could be com-
pared to two other multilingual resources based
on the above-mentioned formalisms: Lingo Ma-
trix (Bender et al., 2002) for HPSG and Pargram
(Butt et al., 2002) for LFG.

Since the task of developing a multilingual
grammar within such a grammar formalism poses
specific challenges, each system comes equipped
with its own IDE/editor that aids the grammar de-
velopment process. Lingo Matrix has a grammar-
customization system (Bender et al., 2010) and
Pargram has XLFG, a customized IDE (Clément,
2009). The further use of the resources is sup-
ported by a parser, sentence generator and facili-
ties for profiling and regression testing (Oepen and
Flickinger, 1998).

In addition to the cloud-based IDE, GF also has
a desktop IDE, implemented as an Eclipse plugin
(Camilleri, 2012).

5 Future work

The GF grammar editor described here is imple-
mented in JavaScript and runs in the web browser.
While it already supports a useful subset of the
GF grammar notation, we do not expect to cre-
ate a full implementation of GF that runs in the
web browser, but let the editor communicate with

a server running GF. If a GF server with an appro-
priate API becomes available, it should be possible
to extend the editor to support a larger fragment
of GF, to do more complete error checking and in
general make more of the functionality in the ex-
isting GF tools accessible directly from the online
editor.

Combining the cloud-based grammar editor
with other cloud-based tools opens up possibilities
for new applications, such as a tourist phrasebook
that can be extended by the user with a new topic
of interest, or a language training tool (like the one
in Figure 5) that instructors or students can cus-
tomize for training or testing a particular vocabu-
lary or particular grammatical forms.

Future work on the example-based method in-
cludes combining it with traditional grammar writ-
ing and the possibility to develop more languages
in parallel and use one as an example for the other.
Moreover, since currently the method works for
the case when the linearization type is a category
from the resource library (noun phrase, sentence,
etc), one could also extend the algorithm in or-
der to handle record types comprising more such
syntactic categories. Last but not least, we aim
at covering languages for which large dictionaries
are not available by making the method robust to
unknown words that could be later implemented
by the user.

References
Elnaz Abolahrar. 2011. Multilingual Grammar-Based

Language Training: Computational Methods and
Tools. Master’s thesis, Chalmers University of
Technology.

A. Appel. 1998. Modern Compiler Implementation in
ML. Cambridge University Press.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: an open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
COLING-02 on Grammar engineering and evalua-
tion, pages 1–7, Morristown, NJ, USA. Association
for Computational Linguistics.

Emily M. Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar Customization. Research on Language & Com-
putation, 8(1):23–72. 10.1007/s11168-010-9070-1.

J. Bresnan. 1982. The Mental Representation of Gram-
matical Relations. MIT Press.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The



Parallel Grammar project. In COLING-02 on Gram-
mar engineering and evaluation, pages 1–7, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

John J. Camilleri. 2012. An IDE for the Grammatical
Framework. Gothenburg, Sweden, June.

Lionel Clément. 2009. XLFG5 Documenta-
tion. https://signes.bordeaux.inria.
fr/xlfg5/doc/en/, October.

Ann Copestake. 2002. Implementing typed feature
structure grammars, volume 110. CSLI publica-
tions Stanford.

Stephan Oepen and Daniel P. Flickinger. 1998. To-
wards Systematic Grammar Profiling Test Suite
Technology Ten Years After. Special Issue on Eval-
uation), 411, 12:411–436.

C. Pollard and I. Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.

Aarne Ranta, Ramona Enache, and Grégoire Détrez.
2011. Controlled Language for Everyday Use: the
MOLTO Phrasebook. Proceeding of the 2nd Work-
shop on Controlled Natural Languages (CNL 2010).

A. Ranta. 2004. Grammatical Framework: A Type-
Theoretical Grammar Formalism. The Journal of
Functional Programming, 14(2):145–189.

A. Ranta. 2009a. Grammars as Software Li-
braries. In Y. Bertot, G. Huet, J-J. Lévy,
and G. Plotkin, editors, From Semantics to
Computer Science. Essays in Honour of Gilles
Kahn, pages 281–308. Cambridge University
Press. http://www.cse.chalmers.se/
˜aarne/articles/libraries-kahn.pdf.

Aarne Ranta. 2009b. The GF resource grammar li-
brary. Linguistic Issues in Language Technology,
2(2).

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford. ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

https://signes.bordeaux.inria.fr/xlfg5/doc/en/
https://signes.bordeaux.inria.fr/xlfg5/doc/en/
http://www.cse.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://www.cse.chalmers.se/~aarne/articles/libraries-kahn.pdf

	Introduction
	The GF online grammar editor
	Abstract syntax
	Concrete syntax
	Compiling and testing grammars
	Grammars in the cloud

	Example-based grammar writing
	Related work
	Future work

